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Abstract: A buyer and a seller bargain over the price of an object. Both players can build reputa-
tions for being obstinate by offering the same price over time. Before bargaining, the seller decides
whether to adopt a new technology that can lower his cost of production. We show that even when
the buyer cannot observe the seller’s adoption decision, players’ incentives to build reputations in
the bargaining process can lead to inefficient under-adoption. We also show that under-adoption
occurs if and only if there are costly delays in reaching agreements, and that these inefficiencies
arise in equilibrium if and only if the social benefit from adoption is large enough. Our results
imply that an increase in the social benefit from adoption may lower the probability of adoption and
that the seller having the opportunity to adopt a cost-saving technology may lower social welfare.
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1 Introduction

Suppose a supplier needs to decide whether to adopt a new technology that can lower his cost of

production. Even when the gains from adoption outweigh the costs, the supplier might be reluctant

to adopt due to the concern that after his investment becomes sunk cost, his clients will offer low

prices and expropriate the gains from adoption. This is the well-known hold-up problem, which is

a fundamental determinant of people’s incentives to make relationship-specific investments, firms’

incentives to adopt new technologies, as well as the boundaries of firms and organizations.

The severity of the hold-up problem depends on the bargaining process that determines the

terms of trade as well as players’ information about others’ investment decisions. For example,

Grossman and Hart (1986) assume that bargaining is efficient and that investments are publicly

observed. They show that investments are inefficient unless the player who makes the investment

decision has all the bargaining power. Gul (2001) shows that investments are approximately efficient
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even when the investing player cannot make any offer and hence has no bargaining power, as long

as his opponents can frequently revise their offers and cannot observe how much he has invested.

We revisit the hold-up problem by incorporating an important concern in practice, that players

may have incentives to build reputations for being obstinate in the bargaining process and as a

result, might be reluctant to revise their offers. We show that even when investments are unob-

servable, players’ reputational incentives can lead to inefficient under-investment.1 We also show

that under-investment occurs if and only if there are delays in reaching agreement, and that these

inefficiencies arise in equilibrium if and only if the social benefit from investment is large enough.

We augment the reputational bargaining model of Abreu and Gul (2000) with a technology

adoption stage before the bargaining stage. A buyer and a seller bargain over the price of an object.

The buyer’s value is commonly known. The seller’s production cost is his private information, which

depends on his choice of production technology at the adoption stage before bargaining starts. In

our baseline model, the seller either uses a default technology, or adopts a new technology that has

a lower production cost compared to the default one but requires a positive adoption cost.

In the bargaining stage, the buyer offers a price. The seller either accepts the buyer’s offer,2

or demands a higher price after which players engage in a continuous-time war-of-attrition. With

positive probability, each player is one of a rich set of commitment types who offers an exogenous

price and never concedes. With complementary probability, they are rational and decide what to

offer and when to concede in order to maximize their discounted payoff. As in Abreu and Gul

(2000), our analysis focuses on the case in which commitment types occur with low probability.

Theorem 1 characterizes equilibria of a reputational bargaining game where the distribution of

the seller’s production cost is exogenous. It shows that inefficient delays arise in equilibrium if and

only if (i) the difference between the two production costs is large enough and (ii) the seller has a

low production cost with probability above some cutoff. Our inefficient bargaining result stands in

contrast to the results in Kambe (1999), Abreu and Gul (2000), and Abreu, Pearce and Stacchetti

(2015, or APS), which show that bargaining is efficient when players have no private information

about their payoffs, or when they only have private information about their discount rate.

The bargaining inefficiencies stem from the buyer’s incentive to screen the seller, that is, to

induce sellers with different costs to demand different prices. Screening is feasible when the buyer

1Inefficient adoption always arises in reputational bargaining games where the seller’s investment is observable.
2The uninformed player making the offer first is standard in the reputational bargaining literature which is also

assumed in Abreu, Pearce and Stacchetti (2015) and Fanning (2023)’s contemporaneous work. If the informed player
makes their offer first, then their signaling incentives lead to multiple equilibria, which we leave for future research.
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faces uncertainty about the seller’s cost but not when she faces uncertainty about the seller’s

discount rate. To see why, suppose the buyer offers a price between the two costs, i.e., makes a

screening offer. The low-cost seller gets a positive payoff from conceding, so he faces the trade-off

identified in Abreu and Gul (2000) that demanding more surplus will lower his speed of building

reputations. However, this trade-off is not relevant for the high-cost type since his payoff from

conceding is negative. As a result, the high type prefers to demand more surplus as long as doing

so can reveal his cost. In fact, we show that under our richness assumption on the set of commitment

types, the high type must demand the entire surplus following any screening offer and trade with

delay while the low type must demand strictly less than that and trade immediately. Such an

outcome is incentive-compatible since it is more costly for the low type to postpone trade.

When is screening profitable for the buyer? As in APS, the buyer can offer the high type’s

Rubinstein bargaining price (i.e., makes a pooling offer), which will induce both types of the seller

to trade immediately. She can also make a screening offer, after which she will lose all her surplus

when she faces the high type. Hence, the buyer prefers to screen only if (i) she can pay a lower

price to the low type and (ii) the low type occurs with high enough probability. The former is

true if and only if the difference between the two costs is large enough. This is because when the

cost difference is small, each screening offer leaves too little surplus to the low-cost seller. The low

type can then build reputation faster than the buyer even when he demands a price that is strictly

above the pooling offer, from which he can induce the buyer to concede almost immediately.

Our main result, Theorem 2, shows that in the game with endogenous technology adoption, the

seller’s adoption decision is bounded away from efficiency (under an open set of adoption costs)

if and only if bargaining is inefficient under some exogenous distribution over production costs.

Otherwise, his adoption decision is approximately efficient regardless of the adoption cost. This

result implies that when the adoption decision is unobservable, inefficient adoption and costly delay

arise in equilibrium if and only if the social benefit from adoption is large enough. It also implies

that an increase in the social benefit from adoption may lower the probability of adoption and that

the seller having an opportunity to adopt a cost-saving technology may lower social welfare.

In order to understand Theorem 2, let the seller’s private gain from adoption be the increase

in his payoff from bargaining once he lowers his production cost. A useful observation is that the

seller’s private gain from adoption equals the social benefit from adoption when the buyer makes

the pooling offer, but is bounded below the social benefit when the buyer makes the screening offer.

Suppose the seller’s adoption cost is between his private gain from adoption and the social



1 INTRODUCTION 4

benefit. In equilibrium, the buyer cannot strictly prefer any screening offer, since the seller’s gain

from adoption will be lower than his adoption cost, in which case he will never adopt and the buyer

has no incentive to screen. The buyer cannot strictly prefer the pooling offer, since the seller’s gain

from adoption will exceed his adoption cost, in which case he will adopt for sure and will provide

the buyer a strict incentive to offer low prices. Hence, the buyer must be indifferent between the

pooling offer and some screening offer and the seller must be indifferent at the adoption stage.

However, these indifference conditions seem to be at odds with Theorem 1, which shows that

when the social benefit from adoption is low, the buyer strictly prefers the pooling offer regardless

of the seller’s adoption probability. Knowing that, the seller will have a strict incentive to adopt.

This contradiction arises since Theorem 1 cannot be applied to settings where the distribution

of production cost is endogenous: It only applies once we fix the distribution of production cost

as the probability of commitment types vanishes. But in the game with endogenous technology

adoption, the distribution of production cost depends on the probability of commitment types.

In fact, we show that regardless of the social benefit from adoption, the buyer will make a

screening offer with positive probability and significant delays will arise when the seller’s production

cost is high. This stands in contrast to games with exogenous cost distributions, in which delay

arises if and only if the gap between the two production costs is large enough. Nevertheless, the

equilibrium adoption probability depends on the social benefit from adoption. We show that as the

probability of commitment type vanishes, the adoption probability goes to 1 when the social benefit

from adoption is low, and is bounded below 1 when the social benefit from adoption is high.

Theorem 2 suggests an explanation for the under-adoption of cost-saving technologies, which is

widely documented in agriculture and manufacturing. Our theory fits when (i) the producers know

that the technology can effectively lower cost, (ii) it is hard for buyers to observe the producers’

adoption decisions, but (iii) the producers are reluctant to adopt due to the fear of being held up.3

One example that fits is the under-adoption of Bt cotton. It is well-known among farmers that

Bt cotton can reduce insecticide applications which can lower the cost per unit yield (Qaim and

de Janvry 2003). Although the crop of Bt cotton is more resistant to pests compared to that of

traditional cotton, it is hard for buyers to distinguish between the two since (i) the crops have

similar appearances and (ii) both crops lead to the same final product, i.e., cotton. Some farmers

in Pakistan sampled by Ali and Abdulai (2010) are major landholding households, who seem to

3Wolitzky (2018) provides an alternative explanation based on social learning instead of the producers’ concerns
for being held up. His theory fits when the producers do not know the effectiveness of the new technology.
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have bargaining power. However, the adoption rate is low even among those households, e.g., it is

only 62% in the Punjab province of Pakistan (Ali and Abdulai 2010). Although there are other

explanations, such as the lack of access to credit markets, farmers’ concerns about the hold-up

problem also seem to be relevant given that (i) the adopted farmers are more likely to be members

of organizations that have more bargaining power, and (ii) the farmers’ share of surplus is much

lower than that in countries that have higher adoption rates (Falck-Zepeda, et al. 2000).

In the remainder of this section, we discuss our contributions to the related literature. Section

2 sets up the baseline model in which the seller chooses between two production technologies. The

main results are stated in Section 3 and are shown in the appendices. Section 4 extends our results

to settings where the seller chooses between three or more technologies. Section 5 concludes.

Hold-Up Problem: Grossman and Hart (1986) assume that investments are observable and that

bargaining is efficient. They show that a player’s investment is socially inefficient unless they have

all the bargaining power. Gul (2001) focuses on one-sided unobservable investment. He shows that

the investment decision is socially efficient even when the investing player cannot make any offer

and hence has no bargaining power, as long as their opponent can frequently revise their offers.

We incorporate a practical concern that players might be reluctant to revise their offers due

to their incentives to build reputations for being obstinate. We show that the hold-up problem

re-emerges even when the investment decision is unobservable. Our result implies that the absolute

magnitude of the social benefit from investment has a significant effect on players’ investment

incentives. This is complementary to the existing theories in which a player’s investment incentive

depends only on the ratio between the social benefit from investment and the cost of investment.4

Our conclusion also applies to other forms of selfish investments, such as when the seller decides

whether to divest and become less cost-efficient. When investments are cooperative such as the

seller’s investment increases the buyer’s value (Che and Hausch 1999), the seller has no incentive to

invest when his investment is unobservable, but has an incentive to invest when it is observable. This

stands in contrast to our model in which non-observability leads to stronger investment incentives.

Bargaining & Reputational Bargaining: Our bargaining model has private values with a

gap between the seller’s cost and the buyer’s value. In contrast to Gul, Sonnenschein and Wilson

(1986) who show that there is no delay as the bargaining friction vanishes, we show that players’

4In Che and Sákovics (2004), investment incentives depend on the difference between the social surplus and the
cost of investment, whereas investment incentives depend on the absolute magnitude of social surplus in our model.
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reputation concerns can cause delays. Our result stands in contrast to the inefficiency results that

are driven by interdependent values (Deneckere and Liang 2006, Baliga and Sjöström 2023), no

gap between players’ values (Ausubel and Deneckere 1989), costly concessions (Dutta 2022), risk

aversion (Dilmé and Garrett 2022), and the arrival of new traders (Fuchs and Skrzypacz 2010).

Our paper takes a first step to analyze reputational bargaining games in which the distribution

of players’ preferences is endogenous. This aspect of our paper is novel relative to the existing

works on reputational bargaining, all of which assume that the distribution of players’ preferences

is exogenous. Compared to Abreu and Gul (2000), we introduce heterogeneity in players’ costs and

show that it enables the uninformed player to screen the informed player via unattractive offers,

leading to inefficient delays.5 This stands in contrast to the model analyzed by APS where the only

private information is about a player’s discount rate and whether players are committed.6

A contemporaneous work of Fanning (2023) focuses on the interaction between private in-

formation about values (or equivalently, costs) and outside options, rather than on endogenous

investments. It shows that bargaining is efficient when (i) no rational type is indifferent between

accepting any commitment type’s offer and taking the outside option and (ii) the value of the

rational type is drawn from a rich set. His first requirement violates our richness assumption on

the set of commitment types, as we explain in Section 2.1. Our inefficient adoption result requires

the existence of two adjacent types with sufficiently different production costs,7 which violates his

richness requirement on the set of values. Our assumption fits when the heterogeneity in produc-

tion cost is driven by the differences in production technologies, as adoption decisions are usually

indivisible and adopting an innovative technology may significantly lower the cost of production.

2 The Baseline Model

Time is continuous, indexed by t ∈ [0,+∞]. A buyer (she) and a seller (he) bargain over the price

of an object. The buyer’s value is common knowledge, which we normalize to 1.

Time 0 consists of two stages. In the first stage, the seller decides whether to adopt a new

technology at an adoption cost c > 0. This adoption decision determines his cost of producing the

5Ekmekci and Zhang (2022) study reputational bargaining with interdependent values and only one rational type
for each player. In contrast, we study a private value model where the seller has multiple rational types.

6APS also consider the case in which some commitment types play non-stationary strategies. Since our motivation
is to revisit the hold-up problem when players are unwilling to revise their offers, we assume that all commitment
types demand the same price over time, which is also assumed in Abreu and Gul (2000) and Fanning (2023).

7Ortner (2017) shows that when a seller’s cost may decrease over time, the outcome is efficient if and only if the
buyers’ values are drawn from a rich set. Although our analysis reaches a similar conclusion, the inefficiencies in our
model are driven by players’ incentives to build reputations, which is not the case for Ortner (2017)’s result.
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object, which the buyer cannot observe. If he adopts the new technology, then his production cost

is θ1. If he uses the default technology, then his production cost is θ2, with 0 < θ1 < θ2 < 1. We

extend our results to settings with three or more production technologies in Section 4.

In the second stage, the buyer offers a price pb ∈ [0, 1]. The seller either accepts the offer and

sells at price pb, or rejects the offer and makes a counteroffer ps ∈ (pb, 1], after which players engage

in a continuous-time war-of-attrition. If a player concedes, then players trade at the price offered

by their opponent. If both players concede at the same time, then they trade at price pb+ps
2 . We

adopt the convention that regardless of the seller’s offer ps, if he accepts the buyer’s offer at time 0

or concedes to the buyer at time 0 before the buyer concedes, then we view his offer as pb. Similarly,

if the buyer’s strategy is to offer pb /∈ Pb and accept any counteroffer by the seller, then we relabel

her strategy as offering min Pb and accepting any counteroffer by the seller.8

Players share the same discount rate r > 0. If trade happens at time τ ∈ [0,+∞) and price

p ∈ [0, 1], then the buyer’s payoff is e−rτ (1 − p) and the seller’s payoff is e−rτ (p − θ) − c̃, where

θ stands for the seller’s production cost and c̃ ∈ {0, c} stands for his adoption decision. If players

never trade, then τ = +∞, in which case the buyer’s payoff is 0 and the seller’s payoff is −c̃.

Each player is rational with probability 1−ε and is one of the commitment types with probability

ε > 0. Each buyer-commitment-type is characterized by pb ∈ Pb ⊂ [0, 1], who offers pb and never

accepts prices greater than pb. Each seller-commitment-type is characterized by ps ∈ Ps ⊂ [0, 1],

who offers ps and never accepts prices lower than ps. Let µb ∈ ∆(Pb) and µs ∈ ∆(Ps) be the

distributions of players’ types conditional on being committed, which we assume have full support.

We assume that Pb and Ps are compact and countable, 1 ∈ Ps, and sup Ps\{1} = 1, that is, the

seller can build a reputation for demanding the entire surplus and also for demanding something

less than but close to the entire surplus.9 We discuss this richness assumption in Section 2.1. Let

ν ≡ inf
{
ν > 0

∣∣∣ for every p ∈ [0, 1], (p− ν, p+ ν) ∩Ps 6= ∅ and (p− ν, p+ ν) ∩Pb 6= ∅
}
. (2.1)

If ν is close to 0, then for every p ∈ [0, 1], there exists a commitment type for each player whose

demand is close to p. We focus on the case in which both ν and ε are close to 0, that is, each player

has a rich set of commitment types and players are rational with probability close to 1.

8The same convention is adopted by APS. The key implication is that we can, without loss, focus on equilibria
where the support of the buyer’s offer is a subset of Pb, and the support of the seller’s offer following pb is a subset
of Ps ∪ {pb}.

9Our requirement is satisfied, for example, when there exists ν ∈ (0, 1) such that the set of seller-commitment-types
contains 1 and pj ≡ 1− (1− ν)j for every j ∈ N. Our results allow other commitment types to exist as well.
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The public history consists of players’ offers and whether any player has conceded. The buyer’s

private history consists of the public history and whether she is committed. The buyer’s strategy

consists of her offer σb ∈ ∆[0, 1] and a mapping from players’ offers to her concession time τb :

[0, 1]2 → ∆(R+ ∪ {+∞}). The seller’s private history consists of the public history, whether he is

committed, and his adoption decision. The seller’s strategy consists of his adoption decision, or

equivalently, the distribution of his production cost π ∈ ∆{θ1, θ2}, a mapping from his production

cost and the buyer’s offer to his offer σs : {θ1, θ2} × [0, 1] → ∆[0, 1], and a mapping from his

production cost and players’ offers to his concession time τs : {θ1, θ2} × [0, 1]2 → ∆(R+ ∪ {+∞}).

The solution concept is Perfect Bayesian equilibrium, or equilibrium for short.

2.1 Discussions on the Modeling Assumptions

We use a reputational bargaining approach since our motivation is to revisit the hold-up problem

when players may not want to change their bargaining postures due to their reputation concerns.

Compared to bargaining models with incomplete information but without commitment types such

as Gul, Sonnenschein and Wilson (1986) and Gul (2001), reputational bargaining models lead

to sharp predictions on players’ behaviors and welfare even when both players have bargaining

power.10 This sounds more realistic relative to the restriction that one of the players cannot make

any offer.

We assume that the uninformed player (i.e., the buyer) makes their first offer before the informed

player (i.e., the seller) does. This standard assumption is also made in APS and Fanning (2023).

The uninformed buyer making the first offer seems plausible when a firm procures inputs from its

upstream supplier (e.g., farmers), in which case the firm quotes a price before the negotiations.

We assume that the set of commitment types is rich in the sense that (i) for every p ∈ [0, 1], there

exists a commitment type whose demand is close to p and (ii) there exist seller-commitment-types

who demand the entire surplus as well as seller-commitment-types whose demands are less than

but close to the entire surplus. Our first requirement is standard in the reputational bargaining

literature. For example, it is also assumed in Abreu and Gul (2000) and Fanning (2023).

Our second requirement is violated in Fanning (2023) who assumes that no rational type is

indifferent between accepting any offer made by any commitment type and taking the outside option.

10It is well-known that bargaining models where the informed player can make offers are not tractable to analyze.
As a result, most of the existing works focus on the case where the uninformed player makes all the offers (e.g., Gul,
Sonnenschein and Wilson 1986, Gul 2001). An exception is Gerardi, Hörner and Maestri (2014) that characterizes
the set of equilibrium payoffs when the informed player makes all the offers. We are unaware of any paper that
analyzes models without any commitment type where both the informed and uninformed player can make offers.
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His assumption rules out, for instance, commitment types who demand the entire surplus,11 under

which he shows that an agreement will be reached immediately. The motivation for our requirement

is that a player should be able to build a reputation for being obstinate as long as they demand the

same price over time, regardless of what their demand is.12 We show that inefficient equilibria exist

as long as there exists a commitment type who demands the entire surplus, and that all equilibria

are inefficient when there also exist a sequence of commitment types whose demands approach the

entire surplus. Our findings are robust to the inclusion of any additional stationary commitment

type. In that sense, they are in the spirit of the main results in Fudenberg and Levine (1989) and

Abreu and Gul (2000) that reputation results should apply as long as a certain set of commitment

types occur with positive probability, even when other commitment types may exist as well.13

Nevertheless, we restrict attention to stationary commitment types by requiring every commit-

ment type to demand the same price over time. This requirement is standard in the reputational

bargaining literature and is also assumed in Abreu and Gul (2000), Ekmekci and Zhang (2022),

Fanning (2018, 2023), and so on. It is motivated by a practical concern that once a player changes

their demand, it might be hard for them to convince others that they are obstinate.

3 Analysis & Results

Section 3.1 analyzes a benchmark where the buyer can observe the seller’s adoption decision. Sec-

tion 3.2 analyzes a reputational bargaining game where the seller’s cost is his private information

and is drawn from an exogenous distribution. Section 3.3 analyzes reputational bargaining with

endogenous technology adoption. Our main result, Theorem 2, shows that reputation concerns

lead to costly delays and inefficient technology adoption under an open set of adoption costs if and

only if there are large social gains from adoption. We also explain the subtleties when analyzing

models with endogenous cost distributions.

11Although Abreu and Gul (2000) assume that all commitment types’ demands are strictly less than the entire
surplus, their main result that players will trade immediately at the Rubinstein bargaining price extends when the
set of commitment types satisfies our richness requirement. The intuition is that the rational type will never imitate
the commitment type who demands the entire surplus in any equilibrium.

12We assume that the set of commitment types is countable in order to circumvent measurability issues. This
requirement is assumed in most of the existing reputational bargaining models, which include Abreu and Gul (2000).

13For instance, Fudenberg and Levine (1989) show that the patient player can secure their Stackelberg payoff as
long as there exists a commitment type who takes the Stackelberg action. Abreu and Gul (2000) show that players
obtain their Rubinstein bargaining payoffs as long as there exist commitment types who demand those payoffs.
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3.1 Benchmark: Adoption Decision is Observable

Suppose the buyer can observe the seller’s adoption decision, that is, the buyer knows θ. Proposition

3 in Abreu and Gul (2000) implies that, for any small ν > 0, as ε → 0, players will trade with

almost no delay at a price approximately pθ ≡ 1+θ
2 . We call pθ type-θ seller’s Rubinstein bargaining

price, since it is the equilibrium price in Rubinstein (1982) between a buyer with value 1 and a

seller with cost θ.

The intuition is that the buyer can secure payoff 1− pθ by offering pθ and the seller can secure

payoff pθ − θ by demanding pθ. Their guaranteed payoffs are their equilibrium payoffs since the

sum of these payoffs equals the social surplus from trade 1− θ. The seller’s gain from adoption is

(pθ1 − θ1)− (pθ2 − θ2) = θ2−θ1
2 , which implies that he will adopt only when c ≤ θ2−θ1

2 .

Since it is socially efficient to adopt as long as c < θ2 − θ1, the equilibrium adoption decision is

inefficient when c ∈
(
θ2−θ1

2 , θ2−θ1

)
. In summary, when the seller’s adoption decision is observable,

there is almost no delay in reaching an agreement but the adoption decision is socially inefficient.

3.2 Reputational Bargaining with Exogenous Production Cost

This section analyzes a reputational bargaining game when θ is drawn from an exogenous full

support distribution π ∈ ∆{θ1, θ2}. We refer to the rational seller with production cost θ as type

θ. Let σb denote the buyer’s strategy of offering min{pθ1 , θ2}. Let σb denote the buyer’s strategy

of offering pθ2 . By definition, pθ2 > min{pθ1 , θ2}. Let σ∗s(·) ≡
{
σ∗s,θ(·)

}
θ∈Θ

, where

σ∗s,θ(pb) ≡


1, if pb ≤ θ,

max
{
pb, 1 + θ1 − pb

}
, if pb ∈ (θ1, θ2] and θ = θ1,

max
{
pb, 1 + θ2 − pb

}
, if pb > θ2.

(3.1)

Later on, we will show in Theorem 1 that σ∗s,θ(·) is type-θ seller’s counteroffer in equilibrium.

In order to understand the expression for σ∗s,θ, we start from explaining the intuition behind

max
{
pb, 1 + θi−pb

}
. Recall that in a reputational bargaining game where it is common knowledge

that θ = θi, for any pair of offers pb and ps with θi < pb < ps < 1, the seller will concede at rate

λs ≡
r(1− ps)
ps − pb

, (3.2)
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and the buyer will concede at rate

λib ≡
r(pb − θi)
ps − pb

. (3.3)

These are the rates that make the other player indifferent between conceding and not conceding.

Proposition 3 in Abreu and Gul (2000) implies that as the probability of commitment types ε

vanishes, the player with a lower concession rate will concede at time 0 with probability close to 1.

If θi is common knowledge, then (3.2) and (3.3) imply that players will concede at the same rate

when the seller offers 1 + θi − pb. This implies that the seller can secure a price of approximately

max
{
pb, 1 + θi − pb

}
either by accepting the buyer’s offer or by counteroffering something slightly

below 1 + θi − pb and inducing the buyer to concede with probability close to 1 at time 0.

Let

π∗ ≡ min
{

1,
pθ2 − θ2

min{pθ1 , θ2} − θ1

}
, (3.4)

which by definition is strictly positive. One can verify that π∗ < 1 if and only if

θ2 − θ1 >
1− θ2

2
, (3.5)

that is, the difference between θ1 and θ2 is large relative to the surplus generated by the high-cost

type. Theorem 1 shows that for generic π, all equilibria converge to the same limit point when the

sets of commitment types satisfy our richness assumption and the probability of commitment types

vanishes.14 It also characterizes the welfare properties of the unique limiting equilibrium.

Theorem 1. For every π ∈ ∆{θ1, θ2}, there exists at least one equilibrium. Suppose in addition

that π satisfies π(θ1) /∈ {0, π∗, 1}. For every η > 0, there exists ν̄ > 0 such that when ν < ν̄, there

exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν) and every equilibrium (σs, σb, τs, τb) under (ε, ν):

1. If π(θ1) < π∗, then σb is η-close to σb and σs is η-close to σ∗s on the equilibrium path. The

expected welfare loss from delay is less than η conditional on every θ ∈ Θ.

2. If π(θ1) > π∗, then σb is η-close to σb and σs is η-close to σ∗s on the equilibrium path.

Conditional on θ = θ1, the expected welfare loss from delay is less than η. Conditional on

14Throughout the paper, we measure the distance between two distributions (e.g., two mixed actions) using the
Prokhorov metric, defined in Billingsley (2013a). Intuitively, two distributions µ and µ′ are close if for every Borel
set A, the value of µ(A) is close to that of µ′(A′) for some small neighborhood A′ of A. Two strategies are close on
the equilibrium path if the prescribed mixed actions under these strategies are close at every on-path history.
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θ = θ2, the buyer’s equilibrium payoff is 0 and the expected welfare loss from delay is η-close

to

(1− θ2)

{
1−

max
{
pθ1 , 1− (θ2 − θ1)

}
− θ1

1− θ1

}
. (3.6)

The proof is in Appendix B. According to Theorem 1, the qualitative features of the limiting

equilibrium depend on (i) the difference θ2 − θ1 between the two production costs and (ii) the

distribution π over production costs. In particular,

1. When the difference between θ1 and θ2 is small in the sense that θ1 and θ2 violate (3.5), the

buyer offers a high price pθ2 and the seller accepts immediately. The same limiting equilibrium

arises when θ1 and θ2 satisfy (3.5) and the low type occurs with probability less than π∗.

2. When θ1 and θ2 satisfy (3.5) and π(θ1) > π∗, the buyer offers a low price min{pθ1 , θ2}. The

high type demands the entire surplus 1 and the buyer concedes after some delay. This leads

to an expected welfare loss of (3.6). The low type trades immediately either by accepting the

buyer’s offer or by offering 1− (θ2 − θ1), depending on the comparison between pθ1 and θ2.

Theorem 1 suggests that costly delays arise in equilibrium if and only if the difference between

the two production costs is large enough and the seller is likely to have a low production cost. Our

inefficient bargaining result stands in contrast to the efficiency results in reputational bargaining

games without private payoff information (Kambe 1999 and Abreu and Gul 2000), as well as those

in reputational bargaining games with one-sided private information about payoffs, but either the

private information is about the discount rate (e.g., APS) or the set of commitment types violates

our richness assumption (e.g., Fanning 2023). We discuss those models by the end of this section.

We argue that inefficient delays arise whenever the uninformed player, i.e., the buyer, uses her

offer to screen the informed seller, that is, to induce sellers with different costs to demand different

prices. Screening is feasible when players can build reputations and the uninformed player faces

uncertainty about her opponent’s cost. Screening is profitable for the uninformed player when both

the probability of the low-cost type and the difference between the two costs are large enough.

In order to understand the intuition behind Theorem 1, we start from an auxiliary game where

both types of the seller are required to demand the same price. Suppose players’ offers pb and ps

satisfy θ2 < pb < ps < 1. In order to make the buyer indifferent between conceding and not

conceding, the seller needs to concede at rate λs ≡ r(1−ps)
ps−pb . Since the seller’s benefit from conceding

is decreasing in his production cost, the high-cost type will start to concede only after the low-cost
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type has finished conceding. Let Ti denote the time at which type θi finishes conceding and let ε

denote the probability that the seller is committed. By definition, we have

e−λsT1 = ε+ π(θ2)(1− ε) and e−λs(T2−T1) =
ε

ε+ π(θ2)(1− ε)
(3.7)

In order to make the seller indifferent, the buyer first concedes at rate λ1
b ≡

r(pb−θ1)
ps−pb and then

concedes at a lower rate λ2
b ≡

r(pb−θ2)
ps−pb after the high-cost type starts to concede, i.e., at T1. As

ε→ 0, equation (3.7) implies that T1 is bounded while T2 diverges to +∞. As a result, the buyer

spends most of her time conceding at rate λ2
b , so her time-average concession rate is close to λ2

b .

Similar to Abreu and Gul (2000), both players face the trade-off that demanding more surplus

will lower their concession rate and as ε → 0, having a lower concession rate implies that they

need to concede at time 0 with probability close to 1. Hence, the buyer can secure herself a payoff

of approximately 1 − pθ2 by offering pθ2 and the seller with cost θ can secure himself a payoff of

approximately pθ2 − θ by demanding pθ2 . The sum of players’ secured payoffs equals the total

surplus, which implies that their equilibrium payoffs are close to their secured payoffs. When the

conditions in the first statement of Theorem 1 are satisfied, this equilibrium in the auxiliary game

remains an equilibrium in the original game and is the unique limit point as ε and ν go to 0.

When different types of the seller can counteroffer different prices, the buyer can screen the

seller by making a screening offer, that is, an offer that belongs to (θ1, θ2]. Compared to offering pθ2

and inducing both types of the seller to trade immediately, each screening offer can induce different

types of the seller to demand different prices. Although screening causes delays, the buyer may end

up paying a lower price to the seller, which explains her incentive to make such offers.

To elaborate, suppose the buyer offers pb ∈ (θ1, θ2]. Type-θ1 seller obtains a strictly positive

payoff from conceding, so he faces the usual trade-off identified in Abreu and Gul (2000) that

demanding a higher price will lower his speed of reputation building. However, this trade-off is no

longer relevant for type θ2, since his payoff from conceding is non-positive. As a result, type θ2

never benefits from conceding to the buyer and he prefers to demand a larger share of the surplus

as long as doing so can convince the buyer that he has a high production cost.

The key step of our proof is to show that under our richness assumption on the set of commitment

types, the high type must demand 1 after the buyer makes any screening offer pb ∈ (θ1, θ2]. We

formally state this observation as Lemma 1 in Appendix A. This lemma applies both in the case

analyzed in the current section where the distribution of production cost is exogenous and in the
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case analyzed in the next section where the distribution of production cost is endogenous.

To see why, suppose by way of contradiction that the high type demands ps < 1 with positive

probability. The low type must offer every price in Ps
⋂

(ps, 1) with positive probability. This is

because otherwise, the high type will find it strictly profitable to deviate to one of these prices

instead of offering ps. In equilibrium, for every pair of prices offered by the seller with positive

probability, offering the higher price will lead to a longer expected delay and a higher expected

trading price. This implies that when the low type has an incentive to demand a higher price

p′s > ps, the high type should have no incentive to demand a lower price ps. This leads to a

contradiction and implies that the high type must demand 1 following any screening offer.

In summary, the buyer faces a trade-off when she chooses between making a screening offer

pb ∈ (θ1, θ2] and the pooling offer pθ2 : Screening reduces the surplus she can extract from the high

type but may lower the price she pays to the low type. The latter is true if and only if the difference

between θ1 and θ2 is large enough. This is because when θ1 and θ2 are too close, every screening

offer pb ∈ (θ1, θ2] is too low relative to the Rubinstein bargaining price of the low type pθ1 . If

θ2 + pθ2 ≤ 2pθ1 or equivalently θ2 − θ1 ≤ 1−θ2
2 , then for any pb ∈ (θ1, θ2], the low type can offer

something greater than pθ2 and induce the buyer to concede almost immediately, in which case

screening is unprofitable for the buyer. This explains the logic behind (3.5). When θ2− θ1 >
1−θ2

2 ,

π∗ is the probability of the low type under which the buyer’s benefit from screening equals her cost

of screening, so the buyer prefers to make the screening offer if and only if π(θ1) > π∗.

A natural question following Theorem 1 is that what will happen when π(θ1) = π∗? Although

the buyer will be indifferent between the pooling offer pθ2 and her optimal screening offer pb ∈ (θ1, θ2]

in the limit where ε → 0, she will have a strict preference for one of these offers under a generic

ε. In fact, the cutoff belief π∗ will play a crucial role once we analyze the reputational bargaining

game with endogenous technology adoption in the next section.

In the last step, we compute the expected delay π(θ2)
{

1 − E[e−rτb |θ = θ2]
}

and the expected

welfare loss from delay π(θ2)(1− θ2)
{

1− E[e−rτb |θ = θ2]
}

in the inefficient equilibria by bounding

the value of E[e−rτb |θ = θ2]. Our bounds are derived via the two types of the seller’s incentive

constraints. First, after the buyer makes a screening offer, type θ1 cannot find it profitable to

demand 1 in any equilibrium, which leads to the following upper bound for E[e−rτb |θ = θ2]:

(1− θ1)E[e−rτb |θ = θ2]︸ ︷︷ ︸
type θ1’s payoff from demanding 1

≤ max{pθ1 , 1− θ2 + θ1} − θ1︸ ︷︷ ︸
type θ1’s equilibrium payoff

. (3.8)
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Second, type θ2 cannot profit from demanding any ps that is strictly less than but close to 1

and then never conceding to his opponent. In order to formally state this incentive constraint,

we start from introducing a few extra notation. Fix players’ offers pb and ps. Let T1 denote the

time it takes for type θ1 to finish conceding and let cb denote the probability with which the buyer

concedes at time 0, both of which depend on the buyer’s posterior belief about the seller’s type.

Type θ2’s incentive constraint implies that

(1− θ2)E[e−rτb |θ = θ2]︸ ︷︷ ︸
type θ2’s equilibrium payoff

≥ (ps − θ2)

(
cb + (1− cb)

(
1− e−(r+λ1b)T1

)min{pθ1 , θ2} − θ1

ps − θ1

)
︸ ︷︷ ︸

type θ2’s payoff from deviating to ps ≈ 1

. (3.9)

This leads to a lower bound on E[e−rτb |θ = θ2], which is attained when the buyer assigns zero

probability to type θ2 after observing (pb, ps). We show in Appendix B that, as ps → 1 and ε→ 0,

the right-hand-side of (3.9) is at least

max{pθ1 , 1− θ2 + θ1} − θ1

1− θ1
(1− θ2). (3.10)

Therefore, the upper and the lower bounds for E[e−rτb |θ = θ2] coincide in the limit, which pin down

the limiting value of E[e−rτb |θ = θ2]. Our calculation also suggests that compared to the efficient

equilibrium, the high-cost seller’s payoff is weakly greater in the inefficient equilibrium. Therefore,

the low-cost seller not only bears the loss from delay but is also expropriated by the buyer.

Comparative Statics: We apply Theorem 1 to examine how the expected welfare loss and the

expected delay of reaching agreement depend on the primitives, such as the distribution of the

seller’s production cost π, his production cost under the new technology θ1, and that under the

default technology θ2. As in Theorem 1, we focus on the limit where (ε, ν)→ (0, 0). We start from

examining the effect of an increase in the fraction of sellers with a low production cost.

Corollary 1. Both the expected welfare loss and the expected delay are zero when π(θ1) ∈ [0, π∗),

but are strictly positive and are strictly decreasing in π(θ1) when π(θ1) ∈ (π∗, 1).

Corollary 1 suggests that the expected welfare loss from delay is maximized when π(θ1) is

slightly above π∗. Intuitively, bargaining is efficient when the low type occurs with probability no

more than π∗. When π(θ1) is above π∗, inefficient delay occurs only when the seller has a high

production cost θ2, and conditional on θ = θ2, the expected welfare loss from delay is independent
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of π(θ1). Next, we examine the effect of an increase in the production cost of the low-cost type.

Corollary 2. Both the expected delay and the expected welfare loss are weakly decreasing in θ1.

Intuitively, improving the efficiency of the new technology (i.e., a decrease in θ1) has two effects,

both of which lead to a longer expected delay. First, a lower θ1 makes screening more profitable for

the buyer, which expands the range of π under which the buyer prefers to make the screening offer.

Second, when π(θ1) > π∗, the expected delay after the high type offers 1 weakly increases as θ1

decreases, and strictly increases whenever θ2 ≤ pθ1 . This is driven by the two incentive constraints

that pin down the expected delay: the low type’s incentive constraint leads to a lower bound on

the expected delay and the high type’s incentive constraint leads to an upper bound. According

to (3.8) and (3.9), as θ1 decreases, the low type’s gain from deviation increases and the high type’s

gain from deviation decreases. Hence, the expected delay that satisfies both incentive constraints

increases. Next, we examine the effect of an increase in the production cost of the high-cost type.

Corollary 3. The expected delay is weakly increasing in θ2. The expected welfare loss is weakly

increasing in θ2 when θ2 ∈ (θ1, pθ1) and is weakly decreasing in θ2 when θ2 ∈ (pθ1 , 1).

Intuitively, improving the efficiency of the default technology (i.e., a decrease in θ2) has two

effects. First, a lower θ2 makes screening less profitable, which reduces the range of π under which

the buyer prefers to make the screening offer. This decreases the expected delay as well as the

expected welfare loss from delay. However, there is another effect, namely, a lower θ2 increases the

surplus from trading with type θ2, which makes each unit of delay more costly in terms of social

welfare. Overall, players will reach an agreement sooner when the default technology becomes more

efficient, and the expected welfare loss also decreases if and only if θ2 is lower than pθ1 .

Remarks: Theorem 1 shows that bargaining is inefficient when (i) the set of commitment types

is rich and (ii) the cost difference between the two types of the seller is large enough. Section 4

extends these findings to cases with three or more production costs. The presence of bargaining

inefficiencies stands in contrast to APS and Fanning (2023). APS assume that players only have

private information about their discount rate, in which case there is no offer under which some type

has a strict incentive to concede while other types have no incentive to concede. This explains why

the uninformed player cannot induce different types of the informed player to offer different prices.

Fanning (2023) studies the interaction between private information about values and outside

options in reputational bargaining models with exogenous cost/value distributions. This is related



3 ANALYSIS & RESULTS 17

to our analysis in the current section. He assumes that no rational type is indifferent between

accepting and rejecting any commitment type’s offer. His assumption rules out for example, a

commitment type that demands the entire surplus, which is required to exist for our result. The

motivation for our requirement is explained in Section 2.1. Intuitively, when it is infeasible for the

seller to build a reputation for demanding the entire surplus, the buyer cannot screen the seller in

any equilibrium since it is not optimal for her to concede after delay knowing that the seller will

never concede.

3.3 Reputational Bargaining with Endogenous Technology Adoption

This section analyzes the reputational bargaining game in which the seller’s production cost is

endogenously determined by his adoption decision before the bargaining stage and the buyer cannot

observe whether he has adopted. Recall the definition of π∗ in (3.4) and that π∗ < 1 if and only if

(θ1, θ2) satisfies (3.5). If (θ1, θ2) also satisfies a stronger condition that pθ1 < θ2, then π∗ = 1−θ2
1−θ1 .

We state the interesting parts of our characterization as Theorem 2. A more detailed description

can be found in Lemmas 7-10 in Appendix C, which we also depict graphically in Figure 1.

Theorem 2. There exists at least one equilibrium. For every η > 0, there exists ν̄ > 0 such

that when ν < ν̄, there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν):

1. Suppose (θ1, θ2) violates (3.5). In every equilibrium, the expected delay is less than η, and the

adoption probability is less than η if c > θ2 − θ1 and is more than 1− η if c < θ2 − θ1.

2. Suppose (θ1, θ2) satisfies (3.5). There exists an open interval (c, c) ⊂
(
θ2−θ1

2 , θ2 − θ1

)
such

that for every c ∈ (c, c), there exists an equilibrium where the adoption probability is within

an η-neighborhood of π∗ and the expected delay is bounded above 0.

3. Suppose (θ1, θ2) satisfies pθ1 < θ2. If c ∈
(
θ2−θ1

2 , θ2 − θ1

)
, then in all equilibria, the adoption

probability is within an η-neighborhood of π∗ and the expected delay is bounded above 0.
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Figure 1: Limiting equilibria in the reputational bargaining game with endogenous technology
adoption. Aside from the white region, there is a unique limiting equilibrium. In the white region,
there are two limiting equilibria, one of them has efficient investment and negligible delay in reaching
agreement, another one has inefficient investment and significant delay in reaching agreement.

The proof is in Appendix C. Theorem 2 shows that when the probability of commitment types

goes to 0, the seller’s adoption decision can be socially inefficient if and only if the social benefit

from adoption θ2 − θ1 is large enough. Under a stronger condition that θ2 is greater than the

Rubinstein bargaining price under the production cost of the new technology pθ1 ≡ 1+θ1
2 , inefficient

adoption and costly delay occur in all equilibria as long as the adoption cost c is between half of

the social benefit from adoption θ2−θ1
2 and the entire social benefit from adoption θ2 − θ1.

Theorem 2 has three implications. First, inefficient adoption occurs in equilibrium if and only

if in expectation, there are significant delays in reaching agreement. This stands in contrast to the

benchmark scenario where the buyer observes the seller’s adoption decision, in which case there is

negligible delay in reaching agreement but the seller’s adoption decision is socially inefficient.

Second, an increase in the social benefit from adoption θ2 − θ1 can lower the probability of

adoption. This is because inefficient adoption and costly delays can arise only when the social

benefit from adoption is large enough. Third, the seller having an opportunity to adopt a cost-

saving technology may not improve social welfare, and in some cases, it may even lower social

welfare. This is because there is almost no delay in reaching agreement when the seller has no

opportunity to adopt any new technology but there might be costly delays when the seller has the
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opportunity to adopt. We formally state these findings as Corollaries 4 and 5 later in this section.

One observation that is not explicitly stated in Theorem 2 is that when the parameter values

belong to the blue region of Figure 1, the buyer will make a screening offer (i.e., a price between θ1

and θ2) with probability bounded above 0 and costly delay will arise in all equilibria conditional

on the seller having a high production cost. This is the case even when θ1 and θ2 violate (3.5),

under which for any exogenous full support distribution over production costs, the buyer will offer

something close to the Rubinstein bargaining price of the high-cost type pθ2 with probability close

to 1 and there is almost no delay in reaching agreement regardless of the seller’s production cost.

In order to understand the above observation as well as Theorem 2, we start from a heuristic

explanation using our result for reputational bargaining games with an exogenous cost distribution

(Theorem 1). Then we point out a contradiction that results from this line of reasoning and explain

why Theorem 1 cannot be directly applied to settings where the cost distribution is endogenous.

First, fix any π ∈ ∆{θ1, θ2} that has full support and satisfies π(θ1) 6= π∗. Theorem 1 implies

that as ε→ 0, in every efficient equilibrium, the difference between the low-cost type’s equilibrium

payoff and that of the high-cost type’s is approximately θ2−θ1, and in every inefficient equilibrium,

this difference in equilibrium payoffs is approximately (θ2 − θ1)α where

α ≡

 1
2 if pθ1 < θ2

1−θ2
1−θ1 if pθ1 ≥ θ2 and (θ1, θ2) satisfies (3.5).

Intuitively, in every efficient equilibrium, both types of the seller trade immediately at the same

price, in which case the seller captures all the gains from adoption. In every inefficient equilibrium,

the low type not only bears the welfare losses from delay but is also appropriated by the buyer.

Fix any adoption cost c that is strictly between (θ2−θ1)α and θ2−θ1. In equilibrium, the seller

cannot adopt with zero probability since the buyer will offer a high price pθ2 . If this is the case,

then the seller’s gain from adoption is θ2 − θ1, which will provide him a strict incentive to adopt

the technology. He cannot adopt with probability 1 in any equilibrium since the buyer will then

offer pθ1 and type-θ2 seller’s payoff is at least 1−θ2
2 when he demands ps ≈ 1 and never concedes

to the buyer. The seller’s gain from adoption is close to θ2−θ1
2 . As long as the cost of adoption is

strictly more than that, the seller will have no incentive to adopt the technology. We can also rule

out interior adoption probabilities that are not π∗, since the seller’s gain from adoption will not

equal his cost of adoption, in which case he will have no incentive to mix at the adoption stage.

The above logic suggests that in every equilibrium, the seller must adopt with probability π∗.
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However, when (θ1, θ2) violates (3.5), or equivalently π∗ = 1, all equilibria are efficient in the game

with an exogenous cost distribution, so there does not seem to exist any adoption probability that

makes the seller indifferent between adopting and not adopting when (θ2 − θ1)α < c < θ2 − θ1.

The above contradiction is driven by the different orders of limits in Theorems 1 and 2, making

Theorem 1 and other existing results on reputational bargaining inapplicable to settings where π is

endogenous. Specifically, Theorem 1 characterizes the set of equilibria under a fixed cost distribution

π in the limit where ε→ 0. The same order of limit also applies to the results in APS and Fanning

(2023). However, π depends on the probability of commitment types ε when adoption is endogenous

and the probability with which the seller having a high production cost may also vanish as ε→ 0.

This is indeed what happens when (θ1, θ2) violates (3.5) and c ∈
(
θ2−θ1

2 , θ2 − θ1

)
. We show

that for every ξ > 0, there exists ε > 0 such that Theorem 1 applies for all ε < ε and π with

π(θ1) ∈ [0, 1−ξ]. However, the qualitative features of the equilibria are different for any fixed ε > 0

as π(θ1)→ 1. Although for any fixed π ∈ ∆{θ1, θ2}, the buyer strictly prefers the pooling offer pθ2

as ε→ 0, she will prefer one of the screening offers for any small but fixed ε as π(θ1) goes to 1.

In response to any of the buyer’s screening offer, type θ2 counteroffers a higher price and

trades with delay, with the expected delay pinned down by the seller’s indifference condition at the

adoption stage. Type θ1 accepts the buyer’s screening offer with probability close to 1 and pools

with type θ2 with probability close to 0. Although there are significant delays conditional on the

seller’s production cost being θ2, these delays have negligible payoff consequences from an ex ante

perspective since the probability with which the seller’s production cost is θ2 will go to 0 as ε→ 0.

When c ∈
(
θ2−θ1

2 , θ2− θ1

)
and (θ1, θ2) satisfies not only (3.5) but also a stronger condition that

pθ1 < θ2, one can no longer sustain an approximately efficient outcome where the seller adopts

the technology with probability close to 1. This is because when the buyer offers pθ1 , the seller

has no incentive to concede when his cost is θ2. As a result, the seller can secure payoff 1−θ2
2 by

not adopting the technology and demanding something close to 1. This guaranteed payoff 1−θ2
2 is

strictly greater than his payoff from adopting the technology and accepting the buyer’s offer pθ1 ,

which contradicts the hypothesis that the seller adopts the technology with probability close to 1.

Therefore, in every equilibrium, the seller will adopt with probability bounded below 1. As ε→ 0,

the equilibrium adoption probability is close to π∗, since it is the only adoption probability that

can make the buyer indifferent between the pooling offer pθ2 and her optimal screening offer.

When c ∈
(
θ2−θ1

2 , θ2−θ1

)
and (θ1, θ2) satisfies (3.5) but pθ1 ≥ θ2, there exist inefficient equilibria

where the seller adopts with probability close to π∗ since Theorem 1 applies uniformly to all π with
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π(θ1) bounded below 1. However, there are also efficient equilibria where the seller adopts with

probability close to 1. We explain in detail why there are multiple limit points in Appendix C.

The above explanation also sheds light on why inefficient adoption occurs if and only if there

are significant delays in bargaining. Intuitively, if the equilibrium adoption decision is bounded

away from efficiency, then it cannot be the case that both types of the seller trade immediately.

This is because otherwise, both types must trade at the same price and the seller can capture all

the gains from adoption, providing him a strict incentive to make the efficient adoption decision.

If the adoption decision is approximately efficient, then the probability with which the seller does

not adopt must be arbitrarily close to zero.15 Since inefficient delay cannot occur when the seller

has a low cost, the welfare losses from delay must be negligible from an ex ante perspective.

Adoption Probability & Welfare: First, we provide sufficient conditions under which an in-

crease in the social benefit from adoption lowers the probability of adoption and leads to a longer

expected delay, which we measure by 1− E[e−rmin{τs,τb}].

Corollary 4. For every θ1, θ2, and c that satisfy

θ2 − θ1 >
1− θ2

2
, and max

{1

2
,
1− θ2

1− θ1

}
(θ2 − θ1) < c < θ2 − θ1,

and every θ̂1 < θ1 that satisfies 1+θ̂1
2 < θ2 and θ̂1 ∈ (θ2 − 2c, θ2 − c). There exists ν > 0 such that

for every ν < ν, there exists εν > 0 such that if ε < εν ,

1. The probability of adoption in any equilibrium under (θ1, θ2, c, ε, ν) is strictly greater than the

probability of adoption in any equilibrium under (θ̂1, θ2, c, ε, ν).

2. The expected delay in any equilibrium under (θ1, θ2, c, ε, ν) is strictly less than the expected

delay in any equilibrium under (θ̂1, θ2, c, ε, ν).

The proof is in Online Appendix F. We depict the complete comparative statics on the adop-

tion probability and the expected delay in Figures 2a and 2b, where the white region represents

parameter values under which there are multiple limiting equilibria. Corollary 4 implies that when

the production cost under the new technology decreases from θ1 to θ̂1, i.e., adoption becomes more

socially beneficial, the probability of adoption decreases as long as θ2 − θ̂1 is intermediate: It is

15In our model, inefficient adoption is caused by the hold-up problem, so the seller will not adopt when his adoption
cost is greater than the social benefit. This implies that inefficiency can only take the form of under-adoption.
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(a) Adoption probability (b) Expected delay

Figure 2: Comparative statics on the equilibrium outcomes. The white region represents the set of
parameter values under which there are multiple limiting equilibria. In regions where the unique
limiting equilibrium is inefficient, the values of π(θ1) and 1−E[e−rmin{τs,τb}] are depicted in panels
(a) and (b), respectively, in ascending vertical order according to the color bar on the right of the
figure. That is, aside from the white region, a deeper color represents a lower adoption probability
(in the left panel) and a lower expected delay (in the right panel) in the unique limiting equilibrium.
In the remaining regions, the seller’s adoption deicision is socially efficient: The adoption probability
is 0 when c > θ2 − θ1, and is 1 when c < θ2 − θ1, and the expected delay is zero in the limit.

large enough so that the buyer has an incentive to screen the seller, but is not too large relative to

the adoption cost c so that the seller has no incentive to adopt if he knew that the buyer will offer

p
θ̂1

. It also implies that a decrease from θ1 to θ̂1 when θ2 − θ̂1 is intermediate can also lead to a

longer expected delay, which leads to further efficiency losses.

Next, we compare the equilibrium outcomes in our model to the ones in a benchmark where

the seller has no opportunity to adopt the cost-saving technology. We provide sufficient conditions

under which the seller’s opportunity to adopt the technology does not increase social welfare, as

well as conditions under which the opportunity to adopt leads to a strictly lower welfare.

Corollary 5. For every η > 0, there exists ν > 0 such that for every ν < ν, there exists εν > 0

such that when ε < εν ,

1. If θ2 − θ1 > 1 − θ2 and c ∈
(
θ2−θ1

2 , θ2 − θ1

)
, then the equilibrium welfare when the seller is

not allowed to invest is η-close to the equilibrium welfare when investing is allowed.

2. If θ2−θ1 ∈
(

1−θ2
2 , 1−θ2

)
and c ∈

(
1−θ2
1−θ1 (θ2−θ1), θ2−θ1

)
, then the lowest equilibrium welfare

when the seller cannot invest is strictly bounded above that when the seller can invest.

The proof is in Online Appendix F. The intuition is that when the seller cannot adopt the
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technology, players will trade efficiently conditional on the seller having a high production cost.

When the seller has an opportunity to adopt the cost-saving technology, it leads to uncertainty

about the seller’s production cost which will induce delays in reaching agreement. We show that

the welfare losses from delay may completely offset the social benefit from adoption, and it might

be strictly greater than the social benefit in some equilibria under some parameter values.

4 Extension: Choosing Between Multiple New Technologies

This section extends our theorems to settings where the seller chooses a production technology from

{1, 2, ..., n} before bargaining with the buyer, where θj stands for the production cost of technology

j and cj stands for the cost of adopting technology j. Let Θ ≡ {θ1, ..., θn} and C ≡ {c1, ..., cn}.

We assume that 0 < θ1 < ... < θn < 1 and c1 > ... > cn = 0. This implies that (i) there exists

a default technology θn that is costless to adopt, (ii) all new technologies θ1, ..., θn−1 are costly

to adopt but lead to lower production costs compared to the default one, and (iii) technologies

that have higher adoption costs have lower production costs. These assumptions are without loss

of generality since a technology will never be adopted in any equilibrium if it costs more than a

more efficient technology. We make a generic assumption that there is a unique socially efficient

technology and focus on the interesting case that the socially efficient technology is not the default

one. Formally, we assume that there exists jo < n such that {jo} = arg min k∈{1,2,...,n}

{
θk + ck

}
.

First, we consider a reputational bargaining game where the distribution over production cost

π ∈ ∆(Θ) is exogenous. Theorem 3 characterizes players’ equilibrium strategies in the limit as ν

and ε go to zero. Let σ∗b,i ∈ ∆[0, 1] denote the buyer’s strategy of offering min{pθi , θi+1}. Let

σ∗s,θ(pb) ≡


1, if pb ≤ θ,

max
{
pb, 1 + max{θ̂ ∈ Θ : pb > θ̂} − pb

}
, if pb > θ

(4.1)

be a strategy for type θ. That is, for every pb > θ1 and θj = max{θ̂ ∈ Θ : pb > θ̂}, σ∗s ≡ (σ∗s,θ)θ∈Θ

prescribes all types with production cost strictly greater than θj to demand the entire surplus 1,

and all types with production cost no more than θj to offer a price under which the buyer and the

seller have the same concession rate when the seller’s production cost is known to be θj .

For any i, j ∈ {1, ..., n} such that i < j, let π[θi, θj ] be the probability that θ ∈ [θi, θj ]. Theorem 3

characterizes the unique limiting equilibrium of the reputational bargaining game with an exogenous
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cost distribution under the generic conditions that

arg max
i∈{1,...,n}

π[θ1, θi]
(

min{pθi , θi+1} − θi
)

is a singleton with its unique element denoted by i∗, and that the cost distribution π is interior.

Theorem 3. There exists at least one equilibrium. Suppose π ∈ ∆(Θ) is such that π(θ) > 0

for all θ ∈ Θ. For every η > 0, there exists ν̄ > 0 such that when ν < ν̄, there exists ε̄ν > 0 such

that for every ε ∈ (0, ε̄ν) and every equilibrium (σs, σb, τs, τb) under (ε, ν),

1. σb is η-close to σb,i∗ and σs is η-close to σ∗s on the equilibrium path.

2. Conditional on θ ≤ θi∗, the expected welfare loss from delay is less than η.

3. Conditional on θ > θi∗, the buyer’s payoff is 0 and the expected welfare loss from delay is

η-close to

(1− θ)

{
1−

max
{
pθi∗ , 1− (θi∗+1 − θi∗)

}
− θi∗

1− θi∗

}
. (4.2)

The proof is in Online Appendix D, which is similar to the one for Theorem 1 except that we

need to establish a general version of Lemma 1 that allows for three or more production costs. The

details can be found in Online Appendix C. According to Theorem 3, the qualitative features of

the equilibrium in this general environment are similar to the ones in which there are two costs. By

making an offer pb that belongs to (θi, θi+1] with i ∈ {1, ..., n−1}, the buyer is able to screen the seller

by providing incentives to all types with cost weakly lower than θi to trade with negligible delay,

and all types with cost strictly greater than θi to separate and demand the entire surplus. Using the

same arguments as those in the proof of Theorem 1, the optimal way in which the buyer can screen

types with cost no more than θi is by offering pb ∈ Pb ∩ (min{pθi , θi+1} − ν,min{pθi , θi+1} + ν).

This ensures the buyer a payoff of π[θ1, θi](min{pθi , θi+1} − θi) in the limit.

According to our theorem, the buyer will screen the seller in equilibrium if and only if i∗ < n, in

which case she will offer a price that is strictly lower than θn instead of offering a price that is close

to pθn ≡ 1+θn
2 . Conditional on the buyer offering pb in a ν-neighborhood of min{pθi∗ , θi∗+1} ≤ θn,

there will be inefficient delay whenever the seller’s production cost satisfies θ > θi∗ . This is because

delay is necessary in order to satisfy the low-cost types’ incentive constraints. The expected delay

in (4.2) is pinned down by the conditions that after the buyer offers min{pθi∗ , θi∗+1}, (i) type θi∗
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does not benefit from demanding 1, and (ii) type θi∗+1 does not profit from deviating to making

an offer slightly below 1 and waiting for the buyer to concede.

In the complementary case in which i∗ = n, the buyer strictly prefers to make a pooling offer

pθn , after which all types of the seller accept immediately, than any screening offer. As in the

two-cost environment, trade happens immediately at a price of approximately pθn .

Next, we describe the limiting equilibria in the game with endogenous technology adoption.

Under the assumption that jo < n, the investment and the bargaining outcome may be inefficient

provided that the buyer finds it beneficial to screen the seller. We provide a condition on the gap

between different types of the seller’s production costs under which the buyer may benefit from

making screening offers under some distribution over cost types. This is the case if and only if

θn − θ1 >
1− θn

2
. (4.3)

As we explain later, if (4.3) is violated, then the buyer can never benefit from screening the seller

by making an offer below θjo , since any such offer is strictly dominated by offering pθn .

Theorem 4. There exists at least one equilibrium of the reputational bargaining game with

endogenous technology adoption. For every η > 0, there exist ν > 0 and ε > 0 such that in every

equilibrium where ν < ν and ε < ε,

1. If (4.3) is violated, the seller adopts θjo with probability greater than 1− η, and the expected

welfare loss from delay is less than η, in any equilibrium.

2. If (4.3) is satisfied, there exists an open set of adoption costs such that there exists an equi-

librium where the seller adopts θjo with probability bounded below one and the expected delay

is bounded above zero.

3. If pθjo < θn, there exists an open set of adoption costs such that, in all equilibria, the seller

adopts θjo with probability bounded below one and the expected delay is bounded above 0.

The proof is in Online Appendix E. For an intuitive description of Theorem 4, consider first

the case in which (4.3) is violated. In any equilibrium, the buyer will offer something close to

the Rubinstein bargaining price for the highest-cost type. Let π ∈ ∆(Θ) be the distribution over

production costs that the seller chooses in equilibrium. We relabel the elements of Θ so that
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supp(π) = {θ̂1, ..., θ̂m}. Let ĉj denote the adoption cost of θ̂j . If (4.3) is violated, then

θ̂i+1 ≤ θ1 + 1− pθn < θ̂i + 1− pθ̂i = pθ̂i for every i ∈ {1, ...,m− 1}.

As in the baseline model, the buyer will offer θ̂i+1 in order to screen the seller with cost less than

θ̂i. If the buyer screens the seller by offering θ̂i+1 for some i ∈ {1, ...,m− 1}, then her payoff is

π[θ̂1, θ̂i](θ̂i+1 − θ̂i) ≤ π[θ̂1, θ̂i](1− pθn) ≤ π[θ̂1, θ̂i](1− pθ̂m) < 1− pθ̂m .

This implies that any such offer is strictly dominated by offering pθ̂m . Given that the equilibrium

price offered by the buyer is arbitrarily close to pθ̂m , the seller’s equilibrium payoff converges to

pθ̂m − θ̂m − ĉm ≤ pθ̂m − θjo − cjo , with strict inequality if θ̂m 6= θjo . This implies that it is optimal

for the seller to adopt the socially efficient technology with probability close to 1.

Conversely, condition (4.3) is sufficient for inefficiencies to arise in equilibrium under an open set

of production costs. In particular, if (4.3) is satisfied and the adoption costs are such that jo = 1,

we can construct an equilibrium where the seller mixes between adopting θjo and using the default

technology θn, in an analogous way as in Section 3.3. To do this, the seller’s adoption strategy

must be such that, in the limit, the buyer is indifferent between offering pθn and min{pθjo , θn},

which yields that π(θjo) converges to
pθn−θn

min{pθjo ,θn}−θjo
. Condition (4.3) implies that π(θjo) < 1.

The discussions above imply that the seller with production cost θn trades with delay in equi-

librium when the buyer offers min{pθjo , θn}. Moreover, if cjo > max
{

1
2 ,

1−θn
1−θjo

}
(θn − θjo), then

there exists a mixed strategy over bargaining postures for the buyer that assigns probability to

pθn and min{pθjo , θn} that guarantees that the seller is indifferent between choosing θn and θjo .

An additional condition, which we derive in the online appendix, ensures that he does not benefit

from deviating to an alternative technology θ /∈ {θjo , θn}. Thus, an equilibrium with inefficient

investment and bargaining delay exists under an open set of adoption costs when (4.3) is satisfied.

If pθjo < θn, then any equilibrium must be inefficient if cjo ∈
( θn−θjo

2 , θn−θjo
)
. This is because,

if he invests efficiently, the seller’s limiting equilibrium payoff is pθjo−θjo−cjo . Given that θn > pθjo ,

he can deviate to θn and demand the entire surplus, which ensures a payoff that is arbitrarily close

to 1−θn
2 . This limiting value is strictly greater than pθjo − θjo − cjo whenever cjo >

θn−θjo
2 .
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5 Concluding Remarks

We study a reputational bargaining model where a seller’s production cost is determined endoge-

nously by whether he adopts an innovative technology before he bargains with a buyer. We show

that due to players’ reputation concerns, there will be inefficient adoption and costly delays in

reaching agreement, and that these inefficiencies arise if and only if there are large enough social

gains from adopting the technology. Our analysis highlights the differences between models with

exogenous distributions over production costs and ones where the distribution over production cost

is endogenous. It also highlights the qualitative differences in the equilibrium outcomes when a

player’s private information is about their cost or value, compared to the case analyzed in APS in

which a player’s private information is about their discount rate. We conclude by discussing several

extensions of our results once we vary our modeling assumptions.

The Timing of Offers: In an earlier draft, we study the case where players make their initial

offers simultaneously and obtain similar results: In the game with an exogenous distribution over

production costs, bargaining is efficient in all limiting equilibria when the difference between adja-

cent types’ production costs is small, and efficient and inefficient limiting equilibria co-exist when

the difference between adjacent types’ production costs is large. The intuition is that when players

make offers simultaneously, the seller does not know whether the buyer will make a screening offer

or a pooling offer, which explains why both can arise in equilibrium. But in the game with en-

dogenous technology adoption, there is a unique limiting equilibrium, in which the seller’s adoption

decision is socially inefficient if and only if the benefit from adoption is large enough.

Our main results partially extend to a model where the order with which players make offers

is endogenous and, as in Kambe (1999), each player becomes committed with positive probability

after making their initial offer. In this game, there exists an equilibrium where the buyer makes an

offer before the seller does, and players’ equilibrium strategies coincide with those in the baseline

model. Nevertheless, there also exist other equilibria due to the seller’s incentive to signal his

production cost. In particular, the off-path belief about the seller’s cost has a significant effect on

players’ incentives when the seller can make an offer before the buyer does.

Bargaining Power: In our model, players’ bargaining powers are determined by the ratio of

their discount rates and a player has more bargaining power when they are more patient relative

to their opponent. Our baseline model assumes that players share the same bargaining power. We
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discuss an extension of our results to the case where players have different discount rates, which

sheds light on the effects of bargaining power on investment incentives and delays.

We use rb to denote the buyer’s discount rate and rs to denote the seller’s discount rate. When

the buyer’s value for the object is 1 and the seller’s cost is θ, the equilibrium price in the Rubinstein

bargaining game is pθ ≡ rb
rs+rb

+ rs
rs+rb

θ. Since the seller obtains a fraction rb
rb+rs

of the total surplus

1− θ, his bargaining power is rb
rb+rs

and the buyer’s bargaining power is rs
rb+rs

.

Suppose first that rb/rs is small enough so that pθ1 < θ2, which is the case when the buyer’s

bargaining power is relatively high. If π(θ1) is close to 1, then the limiting equilibrium in the game

with exogenous production costs is inefficient, in which the buyer offers pθ1 and trades with delay.

Otherwise, the limiting equilibrium is efficient. When the seller’s adoption decision is endogenous,

the adoption probability is bounded below one and there is significant delay in reaching agreement

if and only if c ∈
(

rb
rb+rs

(θ2− θ1), θ2− θ1

)
. In particular, if c < θ2− θ1, in which case adopting the

technology is socially optimal, and rb/rs is arbitrarily small, the limiting equilibrium is inefficient

except for an interval of adoption costs of vanishing Lebesgue measure.

As in the baseline model, the intuition behind the bargaining inefficiencies comes from the

uninformed buyer’s incentive to screen the informed seller. Screening is more attractive for the

buyer when she has more bargaining power. By making a screening offer, the buyer will lower the

price by approximately rs
rb+rs

(θ2 − θ1), which is a decreasing function of rb/rs.

Conversely, in the case where rb/rs is large enough so that pθ1 > θ2, the welfare properties of

the limiting equilibrium will hinge on the size of θ2 − θ1 in a similar way as in Theorems 1 and 2.

Specifically, if θ2 − θ1 <
rb

rb+rs
(1− θ2), then the unique limiting equilibrium is efficient, both under

an exogenous distribution of production cost and under endogenous distributions of production

costs. Otherwise, there always exists an efficient limiting equilibrium, but an inefficient equilibrium

with under adoption and delay may also exist under intermediate values of the adoption cost.

The above discussion highlights a stark contrast once we compare equilibrium welfare in the

extreme cases where one of the player’s discount rate is arbitrarily greater than their opponent’s.

In order to see this, let us focus on the case in which c < θ2 − θ1. If the buyer is arbitrarily more

patient than the seller, then in the unique limiting equilibrium, there is under-adoption and costly

delay for almost all values of c. If the seller is arbitrarily more patient than the buyer, then an

efficient limiting equilibrium always exists, although another inefficient equilibrium may arise under

some parameter configurations.
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A An Implication of a Rich Set of Commitment Types

We establish a lemma which is implied by our richness assumption on the set of commitment types.
It applies both in the case with an exogenous cost distribution and the case with endogenous
technology adoption. For any pb ∈ Pb, let ε̂b(pb) be the equilibrium probability that the buyer is
committed after she offers pb.

Lemma 1. Fix any equilibrium. For any pb that satisfies pb ∈ Pb ∩ (θ1, θ2] and ε̂b(pb) < 1,
type-θ2 seller will demand 1 with probability 1 after observing the buyer offers pb.

Proof. Suppose by way of contradiction that type θ2 offers ps < 1 with positive probability after
the buyer offers pb ∈ Pb ∩ (θ1, θ2] with ε̂b(pb) < 1. Our assumption that sup Ps \ {1} = 1 implies
that (ps, 1)∩Ps is non-empty. Since pb ≤ θ2, type θ1 must offer every p′s ∈ (ps, 1)∩Ps with positive
probability. This is because otherwise, the buyer’s posterior assigns zero probability to type θ1

after observing p′s and will then concede immediately, in which case type θ2 has a strict incentive
to deviate to p′s.

After the seller offers ps and p′s, let T and T ′ denote the times at which the rational-type buyer
finishes conceding, let cb and c′b denote the buyer’s concession probabilities at time 0, and let A
and A′ denote the discounted probability of trade conditional on the seller never conceding and the
buyer being the rational type. On the one hand, type θ2 weakly prefers ps to p′s, which implies that

(ps − θ2)A ≥ (p′s − θ2)A′. (A.1)

On the other hand, it is optimal for type-θ1 seller to offer p′s and to concede at time T ′, so he
prefers this strategy to offering ps and conceding at time T . This incentive constraint implies that:

e−rT
′
ε̂b(pb)(pb − θ1) + (1− ε̂b(pb))A′(p′s − θ1) ≥ e−rT ε̂b(pb)(pb − θ1) + (1− ε̂b(pb))A(ps − θ1),

or

(e−rT
′ − e−rT )

ε̂b(pb)

1− ε̂b(pb)
(pb − θ1) ≥ A(ps − θ1)−A′(p′s − θ1). (A.2)

We can bound the right-hand-side of (A.2) using (A.1), which gives:

A(ps− θ1)−A′(p′s− θ1) = A(ps− θ2)−A′(p′s− θ2) + (A−A′)(θ2− θ1) ≥ (A−A′)(θ2− θ1). (A.3)

Since ps < p′s, inequality (A.1) implies that A > A′. According to (A.2) and (A.3), A > A′

implies that T ′ < T , which further implies that T > 0. As a result, type θ1 must offer ps with
positive probability. This is because otherwise, the buyer will concede immediately following ps,
which contradicts our earlier conclusion that T > 0. Therefore, type θ1 must be indifferent between
(i) offering ps and conceding at time 0 and (ii) offering p′s and conceding at time 0. This implies
that cb(ps − pb) + pb − θ1 = c′b(p

′
s − pb) + pb − θ1, or equivalently, cb(ps − pb) = c′b(p

′
s − pb). Since

p′s > ps, the fact that cb(ps − pb) = c′b(p
′
s − pb) implies that cb ≥ c′b.

The buyer’s concession rate is λb = r(pb−θ1)
ps−pb when the seller offers ps and is λ′b = r(pb−θ1)

p′s−pb
after

the seller offers p′s. Since p′s > ps, we have λb > λ′b. The expressions for T and T ′ imply that

T =
log((1− cb)/ε̂b(pb))

λb
≤

log((1− c′b)/ε̂b(pb))
λ′b

= T ′.

This contradicts our earlier conclusion that T ′ < T .
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B Proof of Theorem 1

Our proof proceeds in four steps. First, we describe the equilibrium in the war-of-attrition game un-
der offers (pb, ps). Next, we use the continuation values in the war-of-attrition game to characterize
the seller’s equilibrium offer after observing the buyer’s offer pb. Then, we use the buyer’s sequential
rationality to show that she offers either pθ2 or min{pθ1 , θ2}. Which one she offers depends on the
comparison between π(θ1) and the cutoff π∗. These three steps together establish uniqueness of
the equilibrium limit point. We establish the existence of equilibrium in Online Appendix A.

Fix π ∈ ∆{θ1, θ2} and an equilibrium (σb, σs, τb, τs). We abuse notation by using σb(pb) and
σs(ps|θ, pb) to denote the probabilities with which σb and σs(θ)(pb) assign to offers pb and ps,
respectively. These probabilities are well-defined given that in equilibrium, the buyer’s offer belongs
to Pb with probability one, and the seller’s offer following pb belongs to Ps ∪ {pb} with probability
one,16 both of which are countable. Let ε̂b(pb) and ε̂s(pb, ps) be the probabilities with which the
buyer and the seller, respectively, are commitment types after observing offers (pb, ps). Let π̂j(pb, ps)
be the probability that the seller is the rational type with production cost θj after observing offers
(pb, ps). In equilibrium,

ε̂b(pb) ≡
εµb(pb)

εµb(pb) + (1− ε)σb(pb)
(B.1)

ε̂s(pb, ps) ≡
εµs(ps)

εµs(ps) + (1− ε)[π{θ1}σs(ps|θ1, pb) + π{θ2}σs(ps|θ2, pb)]
(B.2)

π̂j(pb, ps) ≡
(1− ε)π{θj}σs(ps|θj , pb)

εµs(ps) + (1− ε)[π{θ1}σs(ps|θ1, pb) + π{θ2}σs(ps|θ2, pb)]
. (B.3)

First, we characterize the equilibrium in the continuation game after players offer (pb, ps) ∈
Pb × Ps with 1 > ps > pb > θ1. Fix (pb, ps) and the resulting (ε̂b, ε̂s, π̂1, π̂2). We denote the
resulting continuation game by Γ(pb, ps, ε̂b, ε̂s, π̂), and a pair of equilibrium strategies for the buyer
and type-θ seller by τb ∈ ∆(R+ ∪ {+∞}) and τs : Θ → ∆(R+ ∪ {+∞}), respectively. Let m ≡
max{j ∈ {1, 2} : θj < pb}, which is well defined given that pb > θ1. Recall that λs ≡ r(1−ps)

ps−pb is
the seller’s concession rate that keeps the buyer indifferent between conceding and waiting. For

every j ∈ {1, ...,m}, recall that λjb ≡
r(pb−θj)
ps−pb is the buyer’s concession rate that keeps type-θj seller

indifferent between conceding and waiting. Let λm+1
b = π̂m+1 = 0.

If type-θj seller concedes at time 0 with 0 probability and only concedes at rate λs over the
interval (T j−1, T j), with 0 = T 0 ≤ T 1 ≤ ... ≤ Tm, then the probability that the buyer’s belief
assigns to the event that the seller is either committed or has a production cost that is strictly
above θj will reach 1 at time

T js ≡
− log(ε̂s +

∑
i>j π̂i)

λs
. (B.4)

Likewise, if the buyer does not concede at time 0 and concedes at rate λjb over the time interval
(T j−1, T j), then the buyer finishes conceding at time:

Tb ≡
− log(ε̂b)−

∑m−1
j=1 (λjb − λ

j+1
b )T j

λmb
.

16This follows from the convention explained in Section 2 of relabeling equilibrium strategies when players concede
immediately, and from the fact that, as shown by APS, the first player to reveal that they are rational has to concede
immediately to the opponent’s demand.
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In equilibrium, both players must finish conceding at the same time. Therefore, one of them
concedes with positive probability at time 0 as long as Tb 6= Tms . Let

L ≡ −λs log ε̂b

−
m∑
j=1

(λjb − λ
j+1
b ) log(ε̂s + π̂j+1)

. (B.5)

One can verify that L < 1 if and only if Tb < Tms . Hence, the seller concedes with positive
probability at time 0 if and only if L < 1 and the buyer concedes with positive probability at
time 0 if and only if L > 1. We refer to the player who concedes at time 0 with strictly positive
probability as the weak player. In order to derive the probability with which the weak player
concedes to their opponent at time 0, let

ĉis ≡ 1−

(
ε̂−λss

m∏
j=i

(ε̂s + π̂j+1)λ
j
b−λ

j+1
b

)1/λib

for every i ∈ {1, ...,m}

ĉb = 1− ε̂be
m∑
j=1

λjb(T
j
s−T j−1

s )

.

Let j∗ ≡ min{j ∈ {1, ...,m} : ĉjs <
∑

i≤j π̂i}. Suppose the buyer is the weak player. Then ĉb is
the probability that the buyer concedes at time 0 so that the rational-type buyer finishes conceding
at time Tms . Likewise, if the seller is the weak player and j∗ = 1, then ĉ1

s is the probability with
which type θ1 concedes at time 0 so that the buyer’s belief that the seller is either committed or
that θ ≥ pb reaches 1 at time Tb. However, if j∗ > 1, it is not sufficient to have type θ1 conceding
with probability 1 at time 0 to make both players finish conceding at the same time. Instead, we
need all types strictly below θj∗ to concede at time 0 with probability 1 and possibly type θj∗ to
concede at time 0 with positive probability. As a result, when the seller is the weak player, his
concession probability at time 0 equals ĉj∗s . Lemma 2 summarizes these findings:

Lemma 2. Fix offers (pb, ps) ∈ Pb × Ps with 1 > ps > pb > θ1. In any equilibrium of
Γ(pb, ps, ε̂b, ε̂s, π̂), the buyer concedes with positive probability at time zero if and only if L > 1 and
the seller concedes with positive probability at time 0 if and only if L < 1. Players’ concession
probabilities at time 0 are cb ≡ max{0, ĉb} and cs ≡ max{0, ĉj

∗
s }, respectively.

A formal proof of Lemma 2 can be found in APS, which we omit in order to avoid repetition.
Next, consider the continuation game when no player concedes at time 0. In equilibrium, for

every j ∈ {j∗, ...,m− 1}, type θj will finish conceding at time

T j = T js +
log(1− cs)

λs
. (B.6)

In addition, the rational types of both players will finish conceding at the same time

Tm ≡ min

{
− log(ε̂b)−

∑m−1
j=j∗(λ

j
b − λ

j+1
b )T js

λmb
, Tms

}
. (B.7)

Lemma 3 characterizes players’ equilibrium strategies in the war-of-attrition game:

Lemma 3. In every equilibrium of the war-of-attrition game Γ(pb, ps, ε̂b, ε̂s, π̂) with (pb, ps) ∈
Pb ×Ps and θ1 < pb < ps < 1, the buyer’s and the seller’s concession times τb and τs(θ) satisfy:
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1. For every j ∈ {j∗, ...,m}, the buyer concedes at rate λjb when t ∈ (T j−1, T j) with T j
∗−1 = 0.

2. The seller with cost θ ∈ {θj∗ , ..., θm} concedes at rate λs when t ∈ (T j−1, T j) with T j
∗−1 = 0.

3. The seller never concedes if his production cost is strictly greater than θm.

Next, we characterize players’ concession probabilities at time 0 in the limit where ε → 0.
Formally, consider an infinite sequence {εk}+∞k=0 that satisfies εk → 0 as k → ∞. Let (σkb , σ

k
s ) be

players’ equilibrium bargaining strategies when the ex ante probability of commitment types is
εk. Without loss of generality, we focus on the case where (σkb , σ

k
s ) converges to (σ∞b , σ

∞
s ).17 Let

(ε̂kb , ε̂
k
s , π̂

k) be given by (B.1), (B.2) and (B.3) using (εk, σkb , σ
k
s ), and let limk→∞ π̂

k
j = π̂∞j for every

j ∈ {1, 2} and ε̂∞i ≡ limk→∞ ε̂
k
i for every i ∈ {b, s}.

Lemma 4. Suppose {εk}∞k=1 is such that εk → 0 as k →∞. Let (ckb , c
k
s)
∞
k=1 be given according

to Lemma 2 in the game Γ(pb, ps, ε̂
k
b , ε̂

k
s , π̂

k) with (pb, ps) ∈ Pb ×Ps and θ1 < pb < ps < 1, and let
(c∞b , c

∞
s ) be the limit of this sequence as k →∞. Then,

1. If ε̂∞s (pb, ps) = 0 and λ2
b > λs, then c∞s (pb, ps) = 1.

2. If ε̂∞b (pb) = 0, π̂∞2 (pb, ps) > 0, and λs > λ2
b or pb ≤ θ2, then c∞b (pb, ps) = 1.

3. If ε̂∞b (pb) = 0, and ε̂∞s (pb, ps) > 0 or λs > λ1
b , then c∞b (pb, ps) = 1.

Lemmas 2, 3, and 4 characterize equilibrium strategies in the war of attrition for given players’
offers. Next, we use the above results to derive players’ equilibrium choices of initial offers in the
limit where ε → 0 and ν > 0 is arbitrarily low. For j = 1, 2, let pj(pb) ≡ max{p ∈ Ps : p ≤
1 + θj − pb}. The compactness of Ps ensures that this is well-defined. First, we show that when
the buyer offers pb ∈ (θ2, pθ2) such that ε/σb(pb) is arbitrarily close to zero, both types of the seller
will offer the same price that is close to p2(pb).

Lemma 5. For every η > 0, there exists ν̄ > 0 such that when ν < ν̄, there exists ε̄ν > 0 such
that for every θ ∈ Θ, every ε > 0, and every pb ∈ (θ2, pθ2 ] such that ε/σb(pb) < εν , σs(·|pb, θ) is
η-close to the Dirac measure on p2(pb).

Proof. Fix ν > 0, ε > 0 and any pb ∈ Pb∩(θ2, pθ2 ] with σb(pb) > 0. Suppose by way of contradiction
that type θ2 offers some price p′s that is strictly bounded below p2(pb). We argue that it must be
the case that type θ1 offers p2(pb) with probability bounded above zero and that type θ2 does so
with vanishing probability. Suppose by way of contradiction that this is not the case. According to
Parts 2 and 3 of Lemma 4, for every δ > 0, there is εδ > 0 such that ε/σb(pb) < εδ implies that the
buyer’s time-zero concession probability after the seller offers p2(pb) is at least 1 − δ. Thus, type
θ2’s payoff when he offers p2(pb) is at least (1 − δ)(p2(pb) − θ2). Since δ > 0 is arbitrary, we can
take it to be sufficiently small, in which case we get that, for ε/σb(pb) sufficiently small, the high
type’s payoff when offering p2(pb) is strictly higher than the upper bound on his equilibrium payoff
p′s − θ2. This leads to a contradiction when ε/σb(pb) < εδ.

On the other hand, by Part 2 of Lemma 4, p′s < p2(pb) implies that for every δ > 0, there
exists εδ such that ε/σb(pb) < εδ implies that the buyer’s time zero concession probability after the
seller offers p′s is at least 1 − δ. Let T1 be the time at which the rational buyer finishes conceding
against the low-type seller (as defined in (B.6)) after the seller offers p2(pb), and let cb be the
associated time-zero concession probability for the buyer. Note that T1 → +∞ as ε̂b(pb) → 0.

17This is because otherwise, we can apply the Helly’s selection theorem (Billingsley, 2013b), that ∆[0, 1] is sequen-
tially compact in the topology of weak convergence, and find a converging subsequence and focus on that subsequence.
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For ε/σb(pb) sufficiently small, the low type’s incentive to offer p2(pb) instead of p′s implies that
cb(p2(pb) − θ1) + (1 − cb)(pb − θ1) ≥ p′s − θ1. Moreover, type θ2’s payoff from deviating to p2(pb)
and waiting until T1 for the buyer to concede is at least(

cb + (1− cb)
pb − θ1

p2(pb)− θ1

)
(p2(pb)− θ2) ≥ p′s − θ1

p2(pb)− θ1
(p2(pb)− θ2) > p′s − θ2.

Thus, as ε/σb(pb)→ 0, type θ2 strictly benefits from deviating to p2(pb), which is a contradiction.
If p′s > p2(pb), then Part 1 of Lemma 4 implies that as ε → 0, type θ2 concedes with positive

probability at time zero, and therefore his equilibrium payoff is pb− θ2. An analogous argument to
the one in the previous paragraph then implies that type θ2 obtains a weakly higher payoff from
deviating to p2(pb) (strictly so unless pb = p2(pb) = pθ2). Thus, type θ2’s strategy is η-close to
the Dirac measure on p2(pb). Given this, type θ1 can secure a payoff converging to p2(pb) − θ1 as
ε/σb(pb)→ 0 by offering p2(pb). If he offers ps > p2(pb) with probability bounded above zero, type
θ1 receives a payoff of pb − θ1, which is strictly dominated by offering p2(pb) whenever pb < p2(pb).
Thus, type θ1’s offer converges to the Dirac measure on p2(pb) as well.

Next, we characterize the low-cost seller’s offer conditional on the buyer offering pb ≤ θ2.

Lemma 6. For every η > 0, there exists ν̄ > 0 such that when ν < ν̄, there exists ε̄ν > 0 such
that for every ε > 0, and every pb ∈ (θ1, θ2] such that ε/σb(pb) < εν , σs(·|pb, θ1) is η-close to the
Dirac measure on max{pb, p1(pb)}.

Proof. Fix ν > 0, ε > 0 and any pb ∈ Pb∩ (θ1, θ2] with σb(pb) > 0. First, we show that the low type
has to concede immediately if she demands 1 with positive probability. To see this, suppose that
the low type demands 1, and let T1 be the highest period in the support of his concession strategy
after demanding 1. The buyer’s payoff from conceding is 0, and thus she has a strict incentive to
wait until T1 before conceding. If T1 > 0, the fact that pb > θ1 and that the buyer does not concede
before T1 implies that the low type has a strict incentive to concede at time 0, contradicting that
T1 > 0. Thus, the low type must concede at time 0 with probability 1 after demanding 1, which is
equivalent to counteroffering pb.

Second, we deal with the case in which the low type offers ps < 1 after the buyer offers pb. If
pb > p1(pb), then any offer ps > pb induces type θ1 to concede at time 0 with probability arbitrarily
close to 1: This follows from our characterization in Lemmas 2 and 3 and the fact that the high
type demands 1 with probability 1 by Lemma 1. If pb ≤ p1(pb), Lemmas 2 and 3 imply that type θ1

can induce the buyer to concede with probability arbitrarily close to 1 by offering p1(pb). If type θ1

offers anything greater than p1(pb) with probability bounded above 0, he will concede at time 0 with
positive probability, which is weakly dominated by offering p1(pb) (strictly so unless pb = p1(pb)).
Therefore, type θ1 will offer max{pb, p1(pb)} with probability converging to 1 as ε/σb(pb)→ 0.

We now use these results to characterize the buyer’s equilibrium offer. If the buyer offers any
pb weakly greater than pθ2 , then her payoff can be made arbitrarily close to 1− pb by setting ν to
be sufficiently small and taking ε to 0. This is because the seller is in a weak bargaining position
if he offers anything greater than pb and, by Lemma 4, would have to concede with probability
converging to 1 as ε → 0. Combining this with Lemma 5, it follows that any offer pb ∈ Pb such
that pb > θ2 and ε/σb(pb) < εν yields the buyer a payoff arbitrarily close to 1−max{pb, p2(pb)}.

Next, we derive the buyer’s payoff conditional on offering pb ∈ Pb ∩ (θ1, θ2]. First, suppose the
rational-type buyer offers pb with zero probability in equilibrium. Then, the seller’s posterior belief
assigns probability 1 to the commitment type after observing pb, after which type θ1 will concede
immediately and the buyer’s payoff is at least π(θ1)(1 − pb). Second, suppose the rational-type
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buyer offers pb with positive probability in equilibrium, in which case Lemma 1 implies that type
θ2 seller will counteroffer 1 with probability 1. Next, we derive the low type’s offer. If ε̂b(pb) is
bounded above zero, the low type has to concede immediately following any offer in the support
of his equilibrium strategy. If ε̂b(pb) converges to 0, Lemma 6 says that the low type’s offer is
arbitrarily close to max{pb, p1(pb)} with probability converging to 1. Combining these cases, for
ε sufficiently small, the buyer’s payoff when she offers pb ∈ Pb ∩ (θ1, θ2] is bounded below by
π(θ1)(1−max{p1(pb), pb}) and the lower bound is attained in the limit as ε→ 0 if the buyer offers
pb with non-vanishing probability in equilibrium.

For j = 1, 2, let pνj = arg max
p∈Pb

(1 − max{pj(pb), pb}). Our earlier arguments imply that for a

fixed ν > 0, as ε goes to zero, σb must be arbitrarily close to a strategy belonging to ∆(pν1 ∪ pν2).
Moreover, for ν > 0 sufficiently small, if π(θ1) < π∗, the buyer strictly prefers offering p ∈ pν2 for
a limiting payoff of 1 − pθ2 over offering p ∈ pν1 for a limiting payoff of π(θ1)(min{pθ1 , θ2} − θ1),
and thus limiting equilibrium strategies in this case are characterized by the first part in Theorem
1. The resulting equilibrium outcome is approximately efficient, with an agreement being reached
with negligible delay at a price arbitrarily close to pθ2 .

If π(θ1) > π∗, the buyer strictly prefers to offer p ∈ pν1 . Therefore, the equilibrium strategies
must converge to those described in part two of Theorem 1. If pθ1 ≤ θ2, then in the limit, the
buyer offers pθ1 and type θ1 accepts. Otherwise, the buyer offers θ2 in equilibrium, after which
type θ1 raises the price to p1(θ2) > θ2 after which players play the war-of-attrition game. However,
Lemma 4 shows that the expected delay in the resulting war-of-attrition vanishes as ε → 0 and
thus the equilibrium outcome, conditional on the seller’s cost is θ1, is approximately efficient. If the
seller’s cost is θ2, he will respond to the buyer’s equilibrium offer by demanding the entire surplus
1. In order to deter a deviation from the low type, the buyer must wait a considerable amount
of time before conceding to this demand. As argued in Section 3.2, the incentive constraints of
the seller pin down the expected welfare loss from delay to be approximately given by (3.6). To
complete the argument provided there, we show how to derive (3.10) from (3.9). In order to avoid
the buyer from conceding immediately after the seller demands ps ∈ Ps with ps > 1 − ε, which
would in turn give rise to a profitable deviation for the seller, it must be that type θ1 demands ps
with positive probability (by Lemma 4). As a result, type θ1’s incentive constraint requires that
cbps + (1 − cb) min{pθ1 , θ2} − θ1 ≥ max{pθ1 , 1 − θ2 + θ1} − θ1. Plugging this into (3.9) and using
the fact that T1 → +∞ as ε→ 0, we obtain (3.10).

C Proof of Theorem 2

This appendix establishes the common properties of all equilibria. We establish the existence of
equilibrium in Online Appendix B. Throughout the proof, we use Vθ to denote the equilibrium
payoff of type θ taking the adoption cost into account, and we use π(θ1) to denote the seller’s
equilibrium adoption probability. The following series of lemmas provide necessary conditions for
the limiting equilibria under every parameter configuration, which together establish Theorem 2.

First, consider the case in which c > θ2−θ1, that is, the cost of adoption is strictly greater than
the social benefit from adoption. We show that the seller adopts with zero probability in every
equilibrium. This in turn implies that the buyer has no incentive to offer anything that is strictly
lower than θ2. As a result, she will offer approximately pθ2 ≡ 1+θ2

2 in every equilibrium as ε→ 0.

Lemma 7. If c > θ2 − θ1, then for every η > 0, there exists ν̄ > 0 such that when ν < ν̄, there
exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν), the adoption probability is 0 and the expected delay is
less than η in evrey equilibrium.
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Proof. Suppose by way of contradiction that the seller adopts with positive probability. His payoff
in the bargaining stage after he adopts is Vθ1 ≡ E[e−rτ (p− θ1)|θ = θ1], where τ is the time of trade
and p is the trading price. If the seller deviates to not adopting and uses type θ1’s strategy in the
war-of-attrition game, then he can secure a payoff of E[e−rτ (p− θ2)|θ = θ1]. As a result,

Vθ1 − c− Vθ2 ≤ E[e−rτ |θ = θ1](θ2 − θ1)− c ≤ (θ2 − θ1)− c < 0,

which implies that the seller strictly prefers not to adopt. This leads to a contradiction.

The rest of this proof considers the case in which c < θ2 − θ1. Lemma 8 examines the subcase
in which pθ1 < θ2 and c ∈

(
θ2−θ1

2 , θ2 − θ1

)
. The first condition is that the gap between θ2 and

θ1 is large enough so that the buyer benefits from screening under certain values of π(θ1). The
second condition implies that the adoption cost is neither too high nor too low, which ensures that
the seller is willing to mix at the adoption stage with probabilities that make the buyer indifferent
between the screening offer pθ1 and the pooling offer pθ2 . The buyer’s mixing probabilities over
pθ1 and pθ2 are chosen in order to make the seller indifferent at the adoption stage. Lemma 8
characterizes the unique limiting equilibrium outcome under these two conditions.

Lemma 8. If pθ1 < θ2 and c ∈
(
θ2−θ1

2 , θ2 − θ1

)
, then for every η > 0, there exists ν̄ > 0 such

that when ν < ν̄, there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν), the adoption probability is
η-close to π∗ and the expected delay is bounded above 0.

Proof. Suppose by way of contradiction that |π(θ1) − π∗| > η. If π(θ1) > π∗, we show that the
buyer’s offer converges in distribution to pθ1 . According to Lemma 1, if the buyer offers pb ≤ θ2

with positive probability, then type θ2 will offer 1, and according to Lemma 6, there exist ν > 0
and εν > 0 such that ν < ν and ε < εν implies that type θ1 will counteroffer max{pb, p1(pb)} with
probability converging to 1 as ε → 0. Therefore, if the buyer offers any pb ≤ θ2, then she can
secure a payoff of π(θ1)(1 − max{pb, p1(pb)})(1 − η), which, for η sufficiently small, is maximized
by choosing p∗b ∈ Pb ∩ (pθ1 − ν, pθ1 + ν). If π(θ1) > π∗ and ν is sufficiently small, the resulting
payoff is strictly greater than the buyer’s highest payoff when she offers pb > θ2, which is arbitrarily
close to 1− pθ2 . Therefore, for every η > 0, there exist ν and ε close enough to 0 so that in every
equilibrium, the buyer’s offer will belong to Pb∩ (pθ1 −ν, pθ1 +ν) with probability more than 1−η.

If the seller instead chooses not to adopt and then demands ps ∈ Ps that is arbitrarily close to
1 after the buyer offers p∗b < θ2 and waits for the buyer to concede, then he can secure a payoff that
converges to 1−θ2

2 as ε→ 0. In order to see this, fix any ps ∈ Ps that is close to 1. For any offer p∗b
that the buyer makes in equilibrium with probability bounded above zero, the posterior belief that
the buyer is the commitment type is arbitrarily close to 0 when ε is sufficiently small. Therefore,
the buyer will concede at time 0 with probability arbitrarily close to 1 unless type θ1 offers ps with
positive probability. Type θ1’s incentive to offer ps after the buyer offers p∗b implies that

p∗b − θ1 + c∗b(max{p∗b , p1(p∗b)} − p∗b) = e−rT ε̂b(p
∗
b)(p

∗
b − θ1) + (1− ε̂b(p∗b))A(ps − θ1),

where c∗b is the probability that the buyer concedes at time 0 after the seller offers max{p∗b , p1(p∗b)},18

and A and T are the discounted concession probabilities of the rational-type buyer and the time
at which the rational-type buyer finishes conceding following the seller’s offer ps.

Take the limit as ε → 0 and ps → 1, the value of A converges to
max{p∗b ,p1(p∗b )}−θ1

1−θ1 , which
converges to 1/2 as ν → 0. Thus, for every η > 0 and ν close enough to 0, there exists εν > 0 such

18If max{p∗b , p1(p∗b)} = p∗b , then we can set c∗b = 1.
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that ε < εν implies that type θ2’s payoff when he offers ps is at least 1−θ2
2 −η. As η → 0, this payoff

lower bound is strictly greater than pθ1 − θ1 − c whenever c > θ2−θ1
2 . This contradicts π(θ1) > 0.

Next, suppose π(θ1) < π∗. Fix any small enough ε > 0, the buyer’s incentive constraint requires
that any price that she offers with probability bounded above 0 satisfies p∗b ∈ (pθ2 − ν, pθ2 + ν),
and therefore Vθ1 − c converges to pθ2 − θ1 − c and Vθ2 converges to pθ2 − θ2 as ε→ 0. Hence, for
sufficiently small ν > 0 and ε > 0, we obtain that Vθ1 − c > Vθ2 , where the inequality follows from
c < θ2 − θ1. This contradicts π(θ1) < 1.

Therefore, in any equilibrium, the seller must adopt with probability close to π∗. As in the proof
of Theorem 1, if ε is small enough, then the buyer’s sequential rationality constraint requires that
any price that she offers with probability bounded above 0 must be within an η-neighborhood of an
element of pν1 ∪ pν2 , where pνi ≡ arg max

p∈Pb
(1−max{pi(pb), pb}). After the buyer offers p ∈ pν2 , trade

happens with negligible delay at this price. After she offers p ∈ pν1 , there is trade with negligible
delay conditional on the seller’s cost being θ1, and there is an expected delay converging to 1

2 when
the seller’s cost being θ2. Consequently, let ρ∗ denote the limiting probability with which the buyer
offers pθ2 , type-θ1 seller’s payoff in the bargaining stage converges to ρ∗(pθ2−θ1)+(1−ρ∗)(pθ1−θ1)
and type θ2’s payoff converges to pθ2 − θ2. The seller’s indifference condition at the adoption stage
requires that

ρ∗ =
2c− (θ2 − θ1)

θ2 − θ1
. (C.1)

Note that ρ∗ ∈ (0, 1) if and only if c ∈
(
θ2−θ1

2 , θ2 − θ1

)
. This implies that an equilibrium with

adoption probability converging to π∗ cannot be sustained if pθ1 < θ2 and c /∈
(
θ2−θ1

2 , θ2 − θ1

)
.

This conclusion will be used in the proof of Lemma 10. Therefore, the expected delay in the limit
where ε→ 0 for a fixed ν, and then taking the limit as ν → 0 is

(1− π∗)(1− ρ∗)1

2
=
θ2 − θ1 − c

1− θ1
> 0. (C.2)

Lemma 8 establishes the third part of Theorem 2. In order to show the second part, we need
to consider the case where (3.5) is satisfied but pθ1 > θ2, or equivalently θ2 − θ1 ∈

(
1−θ2

2 , 1 − θ2

)
,

and the adoption cost is intermediate. Lemma 9 characterizes the limiting equilibria in this case.

Lemma 9. If (θ1, θ2) satisfies (3.5), pθ1 > θ2, and c ∈
( (1−θ2)(θ2−θ1)

1−θ1 , θ2 − θ1

)
, then for every

η > 0, there exists ν̄ > 0 such that when ν < ν̄, there exists ε̄ν > 0 such that in every equilibrium
when ε ∈ (0, ε̄ν), either the adoption probability is η-close to π∗ and the expected delay is bounded
above zero, or the adoption probability is greater than 1− η and the expected delay is less than η.

Proof. First, suppose that π∗−π(θ1) > η. Then, analogous to Lemma 8, type-θ1 seller’s equilibrium
payoff converges to pθ2−θ1−c and type-θ2 seller’s equilibrium payoff converges to pθ2−θ2. Therefore,

the seller strictly prefers to adopt the technology at cost c ∈
( (1−θ2)(θ2−θ1)

1−θ1 , θ2−θ1

)
. This contradicts

our earlier conclusion that π(θ1) < 1.
Next, suppose that π(θ1) ∈ (π∗, 1) and π(θ1) is bounded away from both π∗ and 1. Following

the same argument as in the proof of Lemma 8, we know that the buyer will offer θ2 with probability
converging to 1 as ε→ 0. As a result, the limiting equilibrium payoff of type θ1 equals 1−θ2−c, and
the limiting equilibrium payoff of type θ2 equals 1−θ2

1−θ1 (1−θ2). The assumption that c > (1−θ2)(θ2−θ1)
1−θ1

then implies that, for ε and ν sufficiently small, type θ2’s payoff is strictly more than that of type
θ1’s. This contradicts our earlier hypothesis that π(θ1) > π∗ ≥ 0.
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Therefore, the equilibrium adoption probability must converge to either π∗ or 1 in the limit
where ε → 0. If the limit point is π∗, then it must be the case that the buyer mixes between
offering θ2 and pθ2 in a way that makes the seller indifferent between adopting and not adopting
the technology. As in the proof of Lemma 8, let ρ∗ denote the limiting probability with which the
buyer offers pθ2 . The seller’s incentive constraint at the adoption stage requires that in the limit
as ε→ 0 for a fixed ν > 0, and then taking the limit as ν → 0

ρ∗(pθ2 − θ1) + (1− ρ∗)(1− θ2)− c = ρ∗(pθ2 − θ2) + (1− ρ∗)1− θ2

1− θ1
(1− θ2)

or equivalently,

ρ∗ =
(1− θ1)c− (1− θ2)(θ2 − θ1)

(θ2 − θ1)2
. (C.3)

With ρ∗ ∈ (0, 1), we have c ∈
(

(1−θ2)(θ2−θ1)
1−θ1 , θ2 − θ1

)
. The discounted expected time at which

players reach an agreement, in the limit as ε→ 0 for a fixed ν, and then taking the limit as ν → 0,
is then

(1− π∗)(1− ρ∗)1− θ2

1− θ1
=

(3θ2 − 1− 2θ1)(θ2 − θ1 − c)
2(θ2 − θ1)2

> 0. (C.4)

The above conditions must be satisfied in any equilibrium in which the seller’s adoption proba-
bility is arbitrarily close to π∗. Next, we show that such an equilibrium exists. Let π(ε, ν) ∈ (0, 1)
(which is arbitrarily close to π∗) denote the adoption rate that makes the buyer exactly indifferent
between offering pb ∈ pν1 and pb ∈ pν2 . As we show in Online Appendix A, the continuation bar-
gaining game with π(θ1) = π(ε, ν) has an equilibrium. Thus, it suffices to show that, given players’
strategies in the bargaining game, the seller is indifferent at the adoption stage and hence that
π(ε, ν) can be sustained in equilibrium. As argued in the previous paragraphs, when ε and ν are
arbitrarily small, on-path bargaining strategies are arbitrarily close to: the buyer offers pθ2 with
probability ρ∗ ∈ [0, 1] and θ2 with probability 1 − ρ∗; after the buyer offers pθ2 , both seller types
accept, and after the buyer offers θ2, the low type demands 1+θ1−θ2 and the high type demands 1.
Moreover, for small enough ε > 0 and ν > 0, we know that if ρ∗ = 1, then the seller’s equilibrium
payoff from adopting is strictly greater than his payoff from not adopting, while the opposite is
true if ρ∗ = 0. By continuity, there exists ρ(ε, ν) ∈ (0, 1) such that the seller is indifferent between
adopting and not adopting the technology, and therefore the adoption probability π(ε, ν) can be
sustained as the seller’s adoption strategy in an equilibrium of the game.

If the limit point for π(θ1) is 1, then the same argument implies that the buyer’s offer cannot
converge to θ2 as ε→ 0. This is because such an offer would give rise to a profitable deviation for
the seller at the adoption stage. In order to rule out the buyer benefiting from offering θ2, it must
be the case that 1− π(θ1) converges to 0 faster than ε→ 0.

We construct a sequence of such equilibria, where the buyer offers pθ1 in the limit and Vθ1
converges to pθ1−θ1. Conditional on not adopting and the buyer offering pb ∈ (pθ1−ν, pθ1 +ν)∩Pb,
the seller counteroffers p2(pb) which is arbitrarily close to 1+θ2−pθ1 as ν → 0. In order to deter type
θ1 from deviating from offering p1(pb) to offering some p2(pb) that is strictly greater than p1(pb),
it must be that the buyer concedes with probability 0 after the seller offers p2(pb). This condition
pins down the probability with which type θ1 offers p2(pb) in equilibrium, which we denote by β.

Let T1 ∈ R+ denote the time at which type θ1 finishes conceding following offers pb and p2(pb).
As ε → 0, type-θ2 seller’s equilibrium payoff after the buyer offers pb ∈ (pθ1 − ν, pθ1 + ν) ∩ Pb

converges to

(1− e−(r+λ1b)T1)
(1− pb)(p2(pb)− θ2)

p2(pb)− θ1
≤ (1− pb)(p2(pb)− θ2)

p2(pb)− θ1
. (C.5)
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As ν → 0, the right-hand-side of (C.5) converges to
(1−pθ1 )2

1+θ2−pθ1−θ1
.

Since the seller must be indifferent between adopting and not adopting, the time at which type
θ1 finishes conceding, T1, must be such that Vθ1 − c = Vθ2 . We have shown that in equilibrium

T1 =

− log

(
εµs(p2(pb))+(1−ε)(1−π(θ1))

εµs(p2(b))+(1−ε)(1−π(θ1)+π(θ1)β)

)
λs

,

where λs = r(1−p2(pb))
p2(pb)−pb . The above condition pins down the value of π(θ1). Since c > (1−θ2)(θ2−θ1)

1−θ1 >
(1−pθ1 )2

1+θ2−pθ1−θ1
, it must be the case that T1 is bounded above. This is because otherwise, the seller

will strictly prefer not to adopt. This in turn requires that π(θ1)→ 1 as ε→ 0.
On the other hand, type-θ2 seller can secure payoff E[pb] − θ2, which converges to pθ1 − θ2.

Hence, the seller is indifferent between adopting and not adopting only if c < θ2 − θ1. Finally,
since the seller’s adoption probability converges to 1 and there is negligible delay conditional on
the seller adopting the technology, the expected delay is less than η when ε is small enough.

Lemma 9 implies that first, as stated in Theorem 2, when (3.5) holds and θ2 < pθ1 , there is an

open set of production costs, given by

(
(1−θ2)(θ2−θ1)

1−θ1 , θ2 − θ1

)
⊂
(
θ2−θ1

2 , θ2 − θ1

)
such that there

exists an equilibrium with inefficient adoption and significant delay in reaching agreement. This
equilibrium shares the same features as the unique equilibrium characterized in Lemma 8.

Second, there are multiple limiting equilibria. When θ2 < pθ1 and the cost of adoption is close
to θ2− θ1, we can sustain the approximately efficient equilibrium since whenever the buyer expects
the seller to adopt with probability close to 1, her optimal strategy is to offer pθ1 . Since θ2 < pθ1 ,
it must be the case that τs < +∞ if the seller does not adopt. Therefore, conditional on not
adopting, the seller will concede in finite time and the expected delay can make him indifferent
between adopting and not adopting. The fact that π(θ1) is close to 1 ensures that this delay can
be sustained as an outcome of the war-of-attrition game. However, this reasoning does not apply
when θ2 > pθ1 . This is because conditional on not adopting, type θ2 has no incentive to concede
when the buyer offers pθ1 . This leads to a profitable deviation for type θ1 from offering pθ1 .

Finally, we consider the case in which either (3.5) is violated or the cost of adoption is sufficiently
low. We show that investment is efficient and there is almost no delay in reaching agreement.

Lemma 10. If the parameters of the model satisfy (3.5) and c < max
{

1
2 ,

1−θ2
1−θ1

}
(θ2 − θ1), or if

(3.5) is violated and c < θ2 − θ1, then for every η > 0, there exists ν̄ > 0 such that when ν < ν̄,
there exists ε̄ν > 0 such that for every ε ∈ (0, ε̄ν), the adoption probability is at least 1− η and the
expected welfare loss from delay is no more than η.

Proof. Suppose first that (3.5) is violated and c < θ2 − θ1. If the seller adopts with probabil-
ity strictly less than one, then the buyer’s incentive constraint implies that her equilibrium offer
converges to pθ2 . Therefore, type θ’s payoff in the bargaining stage converges to pθ2 − θ. The
assumption that c < θ2 − θ1 then implies that the seller strictly prefers to adopt. This contradicts
our earlier conclusion that π(θ1) < 1.

Next, suppose that (3.5) is satisfied and c < max
{

1
2 ,

1−θ2
1−θ1

}
(θ2 − θ1). In the subcase where

π(θ1) < π∗, the same argument as in the previous paragraph applies. Moreover, our proofs of
Lemmas 8 and 9 imply that an inefficient equilibrium with limiting adoption probability equal to
π∗ exists only if c > max

{
1
2 ,

1−θ2
1−θ1

}
(θ2 − θ1), which is ruled out under the assumption in Lemma

10. In the subcase where π(θ1) ∈ (π∗, 1) and is bounded away from both 1 and π∗, then the
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buyer’s incentive constraint requires that when ε → 0, her offer in equilibrium belong to Pb ∩
({min{θ2, pθ1} − ν, {min{θ2, pθ1} + ν) with probability more than 1 − η. As a result, the seller’s
payoff from adopting the technology converges to max{pθ1 , 1 + θ1− θ2}− θ1− c and his payoff from
not adopting the technology converges to max

{
1
2 ,

1−θ2
1−θ1

}
(1 − θ2). Hence, the limiting payoff gain

from adoption is

max

{
1

2
,
1− θ2

1− θ1

}(
θ2 − θ1

)
− c > 0,

which follows from the assumption that c < max
{

1
2 ,

1−θ2
1−θ1

}
(θ2 − θ1). Hence, the seller’s adoption

probability also converges to 1 as ε→ 0.
Finally, Lemmas 2 and 3 imply that the outcome in the bargaining stage is efficient in the limit

conditional on the seller’s production cost is θ1. This implies that the expected welfare loss from
delay converges to 0 as ε vanishes.
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