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Abstract

We prove that, in sequential games with payoff uncertainty, strong rational-

izability characterizes the path-predictions of forward-induction reasoning across

all possible restrictions to players’ initial hierarchies of beliefs on the exogenous

uncertainty. With this, we can show that the implementation of social choice func-

tions through sequential mechanisms under common strong belief in rationality–

which considerably expands the realm of implementable functions compared with

simultaneous-move mechanisms (Mueller, J. Econ. Theory 2016)– is robust in the

sense of Bergemann and Morris (Theor. Econ. 2009).

1 Introduction

We prove a monotonicity result for a strong version of rationalizability in sequential games

with incomplete information that captures forward-induction reasoning. To illustrate the

importance of this result, we build on work by Bergemann & Morris (2009) and Mueller

∗We thank Carlo Andreatta, Nicodemo De Vito, Shuige Liu, Nicolas Sourisseau, and all the attendants
of the presentation of the paper at SAET 2023, the University of Michigan, NYU, and Bocconi University.
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(2016) to merge the forward-induction analysis of sequential games with the theory of

robust full implementation.1

In a nutshell, Bergemann & Morris (2009) show that robust (virtual) full implementa-

tion of social choice functions with static mechanisms– which amounts to rationalizable

implementation– is severely limited when agents’valuations of outcomes exhibit a mild

degree of interdependence. Mueller (2016) instead proves that using sequential mecha-

nisms and assuming that agents reason by forward induction– as captured by the strong

rationalizability solution concept (Battigalli 1999, 2003)– yields a very significant expan-

sion of the implementable scf’s. Yet, Mueller did not prove that such implementation

is robust to considering contextual restrictions on agents’exogenous interactive beliefs

about each other’s types. This diffi culty is related to the non-monotonicity of the strong

belief concept used to represent forward-induction reasoning (Battigalli & Siniscalchi

2002 and Battigalli & Friedenberg 2012).

We obtain the robustness of implementation w.r.t. strong rationalizability from

a monotonicity result concerning the solution concept: the set of state-dependent
strongly rationalizable paths of play (but not the set of strategy profiles) is monotone

w.r.t. contextual restrictions on exogenous interactive beliefs. In the rest of this Intro-

duction we provide more background and details.

1.1 Robust implementation and rationalizability, static mecha-

nisms

To set the stage, we first remind the reader of the conceptual connection between robust

implementation and rationalizability, which is not a typical textbook topic, focusing

first on static mechanisms. Consider an economic environment E with asymmetric
information. There is a set I of agents and a set Y of economic outcomes (possibly,

lotteries), a subset of some Euclidean space. The (expected) value to player i of outcome

y is vi (θ, y), where θ = (θi)i∈I ∈ Θ = ×i∈IΘi is a state of nature and θi is i’s private

information about θ, or i’s “payoff type.”

Agents hold interactive hierarchical beliefs about each other’s payoff types, which can

be represented by means of a type structure T à la Harsanyi (1967-68). In words, T
1On robust implementation see the survey by Bergemann & Morris (2012) and the relevant references

therein.
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captures what belief hierarchies are commonly believed possible, given some exogenous

contextual restrictions on beliefs. Without contextual restrictions, T is the universal

type structure containing all the collectively coherent belief hierarchies (e.g., Mertens &

Zamir 1985, Brandenburger & Dekel 1993).

A planner (she) can commit to make the agents interact according to a mechanism

M, that is, some commonly known set of rules that yield a set Z of possible paths

of play coupled with an outcome function g : Z → Y . In static mechanisms, Z =

A is just the set of possible action profiles; in the subset of direct mechanisms, Z is

isomorphic to Θ. The triple Γb = (M, E , T ) describes a situation of strategic interaction

called “Bayesian game.”In the traditional full implementation problem, it assumed that
the planner knows both E and T ; with this, she wants to implement a map f (social
choice function, scf) associating each state θ with a desirable outcome y = f (θ) ∈ Y by

letting agents strategically interact according to an “appropriate”solution concept (e.g.,

Bayesian equilibrium, or rationalizability).2 The solution concept yields, for each state

θ ∈ Θ, a set ZΓb (θ) of possible paths of play. A mechanismM fully implements scf
f if, for each state of nature θ, the image set of possible outcomes g

(
ZΓb (θ)

)
contains

only the desired outcome y = f (θ), that is, g
(
ZΓb (θ)

)
= {f (θ)} for all θ.3 However,

the planner often ignores the contextual features captured by type structure T . If she
deems all type structures possible, in compliance with “Wilson’s doctrine,” a natural

notion of robust full implementation requires thatM fully implements the scf f for

all Bayesian games Γb based on (M, E), that is, across all type structures T (see Wilson
1987 and Bergemann & Morris 2009, 2012).4 Since this paper is only concerned with

different forms of full implementation, from now on in this introduction we will omit the

adjective “full.”

Robust implementation is conceptually related to rationalizability, that is, the solu-
tion concept characterizing the behavioral implications of Rationality and Common Belief

2We limit our attention to social choice functions. Similar considerations apply to social choice
correspondences.

3Partial implementation relies on equilibrium analysis and requires instead that g (z (·)) = f (·) for
at least one equilibrium selection z (·) from equilibrium correspondence ZΓb (·).

4Quoting Wilson (1987): “I foresee progress of game theory as depending on successive reductions
in the base of common knowledge required to conduct useful analyses of practical problems. Only by
repeated weakening of common knowledge assumptions will the theory approximate reality.”
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in Rationality (RCBR).5 On the one hand, not relying on the assumption that players’

endogenous beliefs about each other’s behavior serendipitously coordinate on a Bayesian

equilibrium is in itself a form of robustness in the spirit of Wilson’s doctrine. On the other

hand, it has been observed that the state-dependent outcomes consistent with Bayesian

equilibrium across all type structures are precisely those allowed by a version of rationaliz-

ability for games with payoff uncertainty– aka “belief-free rationalizability”– that applies

to structure (M, E), i.e., to a description of the game that does not specify interactive

beliefs about payoff types.6 In particular, restricting attention to static (e.g., direct)

mechanisms, robust Bayesian-equilibrium implementation is equivalent to implementa-

tion w.r.t. rationalizability for games with payoffuncertainty. Maintaining the viewpoint

that rationalizable implementation is in itself a form of robustness, it is also worth not-

ing that robust implementation w.r.t. rationalizability for Bayesian games is equivalent

to implementation w.r.t. rationalizability for games with payoff uncertainty. The intu-

ition for this result is relatively straightforward: (probability-1) belief is a monotone
operator, that is, believing a weak proposition (large event) is easier than believing a

logically stronger proposition (smaller event included in the former one). It follows that

common belief in rationality and in contextual restrictions on exogenous interactive be-

liefs (which yields rationalizability in Bayesian games, see Battigalli et al. 2011) implies

mere common belief in rationality. Since “no restriction” is a particular kind of con-

textual restriction (represented by the universal type structure), the robustness result

follows. With this, we refer to robust implementation (with static mechanisms) also as

“implementation under RCBR.”

Finally, we are going to consider a weaker form of “virtual implementation,” or v-
implementation, that only requires to approximate the desired outcome f (θ) with an

arbitrary degree of precision (see Abreu & Matsushima 1992 and Bergemann & Morris

2009). Clearly, robust v-implementation is easier to achieve than robust implementa-

5See, e.g., Battigalli & Siniscalchi (1999, 2002) and the relevant references therein. Note that here
“rationality”means only expected utility maximization given whatever subjective beliefs a player holds
about co-players’behavior and exogenous uncertainty. Every other restriction on behavior is the result
of additional assumptions on interactive beliefs.

6See Battigalli (1999), Battigalli & Siniscalchi (2003), and the relevant references therein. Technically,
rationalizability for games with payoff uncertainty is slightly different from what Bergemann & Morris
(GEB, 2017) eventually called “belief-free rationalizability.”We use the term with its original and most
natural meaning.
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tion. At this stage of the discussion it is not important to explain the details of v-

implementation. Bergemann & Morris (2009) show that v-implementation with static

mechanisms under RCBR is hard when valuations are highly, or even just mildly depen-

dent on the types of others. Consider the following example. A single good must be

allocated to one of many agents through a static mechanism with monetary transfers.

Each agent/player i values the good

vi (θi, θ−i) = θi + γ
∑
j 6=i

θj (γ ≥ 0) ,

where θi is private information of i and belongs to a finite set of payofftypes Θi that satis-

fies {0, 1} ⊆ Θi ⊆ [0, 1]. As i’s valuation also depends on θ−i, players have interdependent

valuations for the good. The degree of interdependence is increasing in γ. It turns out

that, for γ > 1
|I|−1

, only constant social choice functions can be v-implemented under

RCBR with static mechanisms. This is problematic because, in the extant literature,

only the latter form of implementation is known to be robust.

1.2 Robust implementation and rationalizability, sequential mech-

anisms

Using sequential mechanisms gives more flexibility and could significantly enlarge the

set of robustly implementable scf’s. Yet, the picture becomes more complex (and in-

teresting) if we allow for sequential mechanisms, because there are different versions of

rationalizability for sequential games characterizing the behavioral implications of dif-

ferent specifications of “common belief in rationality”.7 The weakest one, aka “weak

rationalizability” or “initial rationalizability,” relies on the assumption of Rationality

and Common Initial Belief in Rationality (RCIBR, see Battigalli 2003 and Battigalli &

Siniscalchi 1999). Therefore, we refer to (robust v-) implementation w.r.t. this version

of rationalizability as “implementation under RCIBR.”

Since initial (probability-1) belief is monotone, the aforementioned results for static

mechanisms extend to sequential mechanisms (a weak version of perfect Bayesian equilib-

7Where “rationality”is now meant in the sequential sense of subjective expected utility maximization
conditional on observations about previous moves.
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rium) and implementation under RCIBR. However, since weak rationalizability typically

allows for a large set of outcomes, it is unlikely that relevant scf’s can be implemented

under RCIBR. In particular, allowing for sequential mechanisms in the previous example,

one can show that, for γ > 1
|I|−1

, only constant scf’s can be robustly implemented under

RCIBR.8

A stronger and more interesting version of rationalizability for sequential games cap-

tures a form of forward-induction (FI) reasoning, as it characterizes the behavioral im-

plications of Rationality and Common Strong Belief in Rationality (RCSBR). The basic

assumption– called strong belief in rationality– is that players, even if surprised by

the co-players’behavior, hold on to the assumption that co-players are rational as long

as their observations do not contradict co-players’rationality. Similar assumptions apply

to higher levels of strategic sophistication, such as “co-players are rational and strongly

believe in the rationality of others” (see Battigalli & Siniscalchi 2002). The simplest

version of rationalizability capturing RCSBR in incomplete-information environments is

strong rationalizability for games with payoffuncertainty, a kind of “belief-free strong
rationalizability.”Therefore, we refer to implementation w.r.t. strong rationalizability as

“implementation under RCSBR.”

Clearly, strong rationalizability refines weak/initial rationalizability. Thus, allowing

for sequential mechanisms, v-implementation under RCSBR might considerably expand

the set of v-implementable scf’s. Indeed, considering a discretized environment, Mueller

(2016) shows precisely this. For example, in the aforementioned implementation problem

effi cient allocations can be v-implemented under RCSBR for almost all parameter values

γ ≥ 0.

But is v-implementation under RCSBR robust? In other words, suppose agents’inter-

active exogenous beliefs about each other’s payoff types satisfy some contextual restric-

tions represented by a (non-universal) Harsanyi type structure T . Then, their behavior
should satisfy strong rationalizability for the Bayesian game Γb = (M, E ,T ). Robustness

would require that the given scf f is v-implementable w.r.t. strong rationalizability in

Bayesian games across all type structures T . Unfortunately, we cannot replicate the
aforementioned monotonicity argument to show that v-implementability w.r.t. “belief-

free strong rationalizability” is necessarily robust in this sense, because strong belief is

8See Mueller 2016 and 2020.
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not monotone: Indeed, while at the beginning of the game it is easier to believe a weak

proposition such as “my co-players are rational” than a stronger one such as “my co-

players are rational and their exogenous beliefs satisfy the contextual restrictions,”there

typically are more observations consistent with the weaker proposition, and therefore

more instances in which strong belief requires to assign probability 1 to this proposition,

making it more diffi cult to strongly believe it. With this, when contextual considerations

(e.g., social norms) also shape endogenous beliefs about behavior, it is easy to show that

the set of paths of play is non-monotone w.r.t. such contextual restrictions (see Battigalli

& Friedenberg 2012).

Due to the non-monotonicity of strong belief, the extant literature does not show

that v-implementation under RCSBR is robust to considering contextual restrictions on

agents’exogenous interactive beliefs. Yet, existing examples and results concerning the

(non)monotonicity of strongly rationalizable paths of play only refer to restrictions on

interactive beliefs about behavior. We prove that this is not by chance, or lack of try-

ing to find counterexamples. Indeed, our main game-theoretic result is that, although

the strongly rationalizable set of (state-dependent) strategy profiles can be highly non-

monotonic w.r.t. restrictions on exogenous interactive beliefs about payoff types, the

set of state-dependent strongly rationalizable paths of play is (always nonempty and)

monotone w.r.t. such restrictions. With this, we can also prove that v-implementation

under RCSBR is robust. Fix an scf f : Θ → Y . Let Γ = (M, E) denote the game with

payoff uncertainty (or “belief-free”game) induced by mechanismM with outcome func-

tion g : Z → Y in environment E and let θ 7→ ZΓ (θ) denote the strongly rationalizable-

paths correspondence. Suppose that, for all states θ, g
(
ZΓ (θ)

)
≈ {f (θ)} to an arbitrary

degree of precision. Our theorem implies that, for all Bayesian games Γb = (M, E , T ) ob-

tained by appending an Harsanyi type structure T to Γ = (M, E), ∅ 6= ZΓb (θ) ⊆ ZΓ (θ).

Therefore, g
(
ZΓb (θ)

)
≈ {f (θ)} for all such games Γb and states θ to an arbitrary degree

of precision.

The paper is organized as follows. In Section 2, we provide the game-theoretic frame-

work for the analysis. In Section 3 we state and prove our main game-theoretic result.

In Section 4, we use the result for the analysis of Bayesian games. In Section 5, we apply

our results to the robust implementation question. The Appendix collects the proofs of

the key claims and lemmas that are omitted from the main body of the paper.
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2 Fundamentals9

2.1 Multistage games with payoff uncertainty

We consider the following finite multistage game with observable actions and payoff

uncertainty.10 There is a set of players I and each i ∈ I has a set of potentially available
actions Ai. Let A = ×i∈IAi denote the set of action profiles and A<N0 the set of finite
sequences of such profiles (including the empty sequence ∅). A subset of A<N0 is a

tree with root ∅ (the empty sequence) if it is closed under the “prefix-of”precedence

relation � (note that ∅ is a prefix of every sequence). The rules of the game yield a

tree H̄ ⊆ A<N0 of possible sequences, called histories, and a feasibility correspondence
h7→ A (h) =

{
a ∈ A : (h, a) ∈ H̄

}
such that (1) A (h) = ×i∈IAi (h) and (2) A (h) = ∅

implies Ai (h) = ∅ for every i ∈ I. The set of terminal histories– or possible paths of

play– is Z =
{
z ∈ H̄ : A (h) = ∅

}
, and the set of nonterminal histories is H = H̄\Z.

Nonterminal histories are publicly observed as soon as they realize.

Each player i is privately informed of the true value of a payoff-relevant parameter

θi, called the payoff-type of i, whereas the set Θi of possible values of θi is common

knowledge. The parameterized payoff function of player i is

ui : Θ× Z → R,

where Θ = ×i∈IΘi is the set of all possible type profiles. Payoffuncertainty is represented

by the dependence of ui on θ. When convenient, we write ui,θ : Z → R for the section of
ui at θ. Thus, a multistage game with payoff uncertainty and observable actions is given

by

Γ =
〈
I, H̄, (Θi, ui)i∈I

〉
,

where all the featured sets are finite.
9The formalism is based on the (still incomplete) draft of textbookGame Theory: Analysis of Strategic

Thinking by Battigalli, Catonini, and De Vito. Chapter 15 of the book (on the analysis of finite multistage
games with observable actions and incomplete information) analyzes notions of rationalizability for such
games, including strong directed rationalizability.
10We assume observable actions for simplicity of exposition: the analysis can be easily adapted to any

finite game played by agents with perfect recall. The necessary modifications of the proofs are available
upon request. We conjecture that the analysis also extends to games with infinite horizon.
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We interpret function ui as the composition of a parameterized utility function
vi : Θ× Y → R, where Y is the relevant space of outcomes, and an outcome function
g : Z → Y specified by the rules of the game: ui (θ, z) = vi (θ, g (z)).

From these primitives, we can derive a set of strategies Si = ×h∈HAi (h) for each

player i. Let S = ×i∈ISi and S−i = ×j 6=iSj. Note, we take an interim perspective: the

game starts with some exogenously given state of nature θ (e.g., representing players’

traits), imperfectly and asymmetrically known by the players. Thus, strategies only

describe how behavior depends on previous moves. Let ζ : S → Z denote the path
function that associates each strategy profile s = (si)i∈I ∈ S with the induced path

z = ζ (s).11 To ease notation, it is convenient to extend the path function to domain

Θ× S in the obvious way
(θ, s) 7→ ζ̄ (θ, s) = (θ, ζ (s))

and to define the (parameterized) strategic-form payoff function of player i as

Ui = ui ◦ ζ̄ : Θ× S → R.

Finally, for each h ∈ H̄,

S(h) = Si(h)× S−i(h) := {s ∈ S : h � ζ(s)}

denotes the set of all strategy profiles inducing h.12

11Define recursively whether a history is induced by a given strategy profile s: the empty history ∅ is
trivially induced by every s ∈ S. A history (h, a) is induced by s if h is induced by s and a = (si (h))i∈I .
With this, for every s ∈ S, ζ (s) is the terminal history induced by s.
12Actually, S (h) = ×j∈ISj (h) for every h ∈ H̄, but the relevant factorization is S (h) = Si (h) ×

S−i (h).
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The primitive and derived elements are summarized by the following table:

Symbol Terminology

i ∈ I players

ai ∈ Ai actions of i

a ∈ A = ×i∈IAi action profiles

h ∈ H̄ ⊆ A<N0 histories (H̄ is a tree)

Ai (h) (A (h) = ×i∈IAi (h)) feasible actions (action profiles) given h

z ∈ Z terminal histories, or paths of play

H = H̄\Z nonterminal histories

θi ∈ Θi payoff-types of i

θ ∈ Θ = ×i∈IΘi states of nature

ui : Θ× Z → R (parameterized) payoff function of i

si ∈ Si = ×h∈HAi (h) strategies of i

s ∈ S = ×i∈ISi strategy profiles

s ∈ S (h) strategy profiles inducing h

ζ : S → Z path function

ζ̄ : Θ× S → Z extended path function

Ui = ui ◦ ζ̄ : Θ× S → R (param.) strategic-form payoff function of i

2.2 Beliefs

We model the beliefs of each player i as the play unfolds by means of a conditional
probability system (Renyi, 1955)

µi =
(
µi (·|Θ−i × S−i (h))

)
h∈H ∈ ∆H (Θ−i × S−i) ,

abbreviated in µi = (µi (·|h))h∈H . With this, ∆H (Θ−i × S−i) is the subset of arrays of
beliefs µi ∈ (∆ (Θ−i × S−i))H such that, for every h ∈ H, µi (Θ× S−i(h)|h) = 1 and the

chain rule holds, that is, for all h, h′ ∈ H and E ⊆ Θ−i × S−i(h′),

S−i(h
′) ⊆ S−i(h) =⇒ µi (E|h) = µi (E|h′)µi (Θ× S−i(h′)|h) .
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Note that h � h′ implies S−i(h′) ⊆ S−i(h), but the converse is not true because histories

also represent behavior of player i (see, e.g., Battigalli et al. 2023).

We will consider type-dependent restrictions on players’exogenous beliefs (i.e.,
initial beliefs about the types of others), represented by subsets of probability measures:

for all i ∈ I and θi ∈ Θi,

∆̄i,θi ⊆ ∆ (Θ−i) .

With this, we introduce profiles ∆ = (∆i,θi)i∈I,θi∈Θi
of type-dependent subsets of CPSs

such that, for all i ∈ I and θi ∈ Θi,13

∆i,θi =
{
µi ∈ ∆H (Θ−i × S−i) : margΘ−iµ

i (·|∅) ∈ ∆̄i,θi

}
.

The proof of the main theorem will require to construct CPSs with certain features. It

turns out that it is simpler to construct a “forward-consistent belief system”(Battigalli

et al. 2023) with such features and then claim the existence of a CPS that preserves

them. A forward-consistent belief system is an array of beliefs µ̂i = (µ̂i(·|h))h∈H ∈
(∆ (Θ−i × S−i))H such that, for every h ∈ H, µ̂i(Θ−i × S−i(h)|h) = 1 and the forward

chain rule holds: for all h, h′ ∈ H and E ⊆ Θ−i × S−i(h′),

h � h′ =⇒ µ̂i(E|h) = µ̂i(E|h′)µ̂i(Θ−i × S−i(h′)|h).

The forward chain rule is weaker than the chain rule, because, as noticed above, S−i(h′) ⊆
S−i(h) does not imply h � h′.

For each E−i ⊆ Θ−i×S−i, we say that a CPS, or– more generally, a forward-consistent
belief system– µi strongly believes E−i (Battigalli & Siniscalchi 2002) if µi assigns

probability 1 to E−i as long as E−i is not contradicted by observation:

∀h ∈ H, E−i ∩ (Θ−i × S−i (h)) 6= ∅ ⇒ µi (E−i|h) = 1.

Let ∆H
sb (E−i) denote the set of CPSs µi that strongly believe E−i.

For the transformation of belief systems into CPSs, we rely on the following result.

13Such resrictions are called “regular”in Battigalli (2003).
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Let

Hi (si) = {h ∈ H : si ∈ Si (h)}

denote the set of non-terminal histories that can occur if si is played.

Lemma 1 (Battigalli, Catonini and Manili, 2023) Fix a strategy si and a forward-
consistent belief system µ̂i that strongly believes E1

−i, . . . , E
n−1
−i , where E

n−1
−i ⊆ . . . ⊆ E1

−i.

Then, there is a CPS µ̃i that strongly believes E1
−i, . . . , E

n−1
−i such that µ̃i(·|h) = µ̂i(·|h)

for all h ∈ H(si).

2.3 Sequential optimality

We represent the behavior of a rational player i of type θi by means of a (weak) sequen-
tial best reply correspondence µi 7→ ri,θi (µi) defined as

ri,θi
(
µi
)

=

{
s̄i : ∀h ∈ Hi (s̄i) , s̄i ∈ arg max

si∈Si(h)
Eµi(·|h) (Ui(θi, si, ·))

}
.

By Lemma 1 we can take µi to be a forward-consistent belief system; by known dynamic

programming arguments ri,θi (µi) 6= ∅ for all θi and forward-consistent belief systems µi.14

Fix a CPS µi ∈ ∆H (Θ−i × S−i) and a type θi. For each strategy s̄i and history
h ∈ Hi(s̄i), we say that s̄i is a continuation best reply to µi(·|h) ∈ ∆ (Θ−i × S−i (h))

for θi if, for every si ∈ Si(h),

Eµi(·|h) (Ui(θi, s̄i, ·)) ≥ Eµi(·|h) (Ui(θi, si, ·)) .

Thus, s̄i is a (weak) sequential best reply to µi for θi if s̄i is a continuation best reply

to µi(·|h) for θi at every h ∈ Hi(s̄i).15 In the proof of the main theorem, we use the

following dynamic programming result.16

14See Battigalli et al. (2023) and the relevant references therein, where this weak notion of sequen-
tial best reply (which applies to reduced strategies as well as strategies) is extensively discussed and
motivated.
15Strictly speaking, “continuation”should refer to the substrategy on the subtree with root h.
16We conjecture that, using standard truncation arguments, the result can be extended to infinite-

horizon games that satisfy continuity at infinity.
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Lemma 2 Fix a CPS µi, a type θi, and a strategy si. If, for every h ∈ Hi(si), there

exists a continuation best reply s′i ∈ Si(h) to µi(·|h) for θi such that s′i(h) = si(h), then

si is a sequential best reply to µi for θi, that is, si ∈ ri,θi (µi).

2.4 Strong (Directed) Rationalizability

We assume that players are rational and that the restrictions on exogenous beliefs are

transparent, that is, the belief restrictions hold and there is common belief of this fact
conditional on every nonterminal history. Moreover, we assume that players strongly

believe that:

• the co-players are rational and the restrictions are transparent;

• the co-players are rational, the restrictions are transparent, and the co-players
strongly believe that everyone else is rational and that the restrictions are trans-

parent;

• and so on.

In brief, we assume rationality, transparency of the belief restrictions, and common

strong belief thereof.

The previous hypotheses can be made formal in the language of epistemic game theory.

As shown by Battigalli & Prestipino (2013), the behavioral implications of these epistemic

hypotheses are characterized by Strong Directed Rationalizability (Battigalli 2003,
Battigalli & Siniscalchi 2003).17

For each i ∈ I, let C∆,0
i,sb = Θi × Si. Then, for each n > 0, define the set of strongly

∆-n-rationalizable type-strategy pairs of i as

C∆,n
i,sb =

{
(θi, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(C∆,m

−i,sb) ∩∆i,θi , si ∈ ri,θi(µi)
}
.

17These articles use the term “(strong) ∆-rationalizability.” We use “(strong) directed rationaliz-
ability” to refer to the correspondence that associates each profile of belief restrictions ∆ with the
corresponding strongly rationalizable behavior, so that ∆ “directs”the resulting behavior.
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With this, the set of strongly ∆-n-rationalizable strategies for θi is the section at θi of

C∆,n
i,sb

S∆,n
i (θi) =

(
C∆,n
i,sb

)
θi

=
{
si : (θi, si) ∈ C∆,n

i,sb

}
,

and the set of strongly ∆-n-rationalizable strategy profiles at θ is

S∆,n (θ) = ×i∈IS∆,n
i (θi) .

Finally, let

C∆,∞
i,sb = ∩n>0C

∆,n
i,sb

denote the set of strongly ∆-rationalizable type-strategy pairs of i, and let

S∆,∞
i (θi) =

(
C∆,∞
i,sb

)
θi
,

S∆,∞ (θ) = ×i∈IS∆,∞
i (θi) .

Recalling that the sequential best reply correspondence is non-empty valued and noting

that mere restrictions on exogenous beliefs cannot contradict the restrictions on beliefs

about type-dependent behavior implied strategic reasoning, one can prove by induction

the following result:

Lemma 3 (cf. Battigalli 2003) Since ∆ represents restrictions on exogenous beliefs, for

each θ ∈ Θ, the set of strongly ∆-rationalizable strategy profiles is non-empty: S∆,∞ (θ) 6=
∅.

When there are no actual belief restrictions, i.e. when each∆i,θi is the set∆H (Θ−i × S−i)
of all CPSs of i, Strong Directed Rationalizability boils down to Strong Rational-
izability (Pearce 1982, Battigalli 1997), which characterizes the behavioral implica-
tions of Rationality and Common Strong Belief in Rationality (Battigalli & Siniscalchi,

2002).18 We omit the superscript ∆ to denote strong rationalizability: C∞i,sb (C
n
i,sb) is

the set of strongly (n-)rationalizable pairs of i, S∞i (θi) (Sni (θi)) is the set of strongly

18Strong rationalizability was once called “extensive-form rationalizability.”Following Battigalli (2003)
and the more recent literature, we eschew this terminology, because– as mentioned in the Introduction–
there are multiple versions of the rationalizability idea for sequential games represented in extensive form,
based on different versions of “common belief in rationality.”
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(n-)rationalizable strategies of i, and (S∞ (θ))θ∈Θ ((Sn (θ))θ∈Θ) is the set of profiles of

strongly (n-)rationalizable strategies at θ.

A path (terminal history) z ∈ Z is strongly ∆-rationalizable if there exists some

strongly ∆-rationalizable profile (θ, s) such that ζ (s) = z. Thus, the set of strongly
∆-rationalizable paths is ζ̄

(
C∆,∞

sb

)
, and the set of strongly ∆-rationalizable paths at

state of nature θ is the section ζ̄
(
C∆,∞

sb

)
θ

= ζ
(
S∆,∞ (θ)

)
.

3 Main Theorem

We show that, when we consider only restrictions on exogenous beliefs, the set of strongly

∆-rationalizable paths is monotone in ∆, despite the non-monotonicity of strong belief.

Because it suffi ces for our application to implementation theory, here we just focus on

the comparison between some profile ∆ of subsets of CPSs that only restrict exogenous

beliefs, and the case of no restrictions (∆i,θi = ∆H (Θ−i × S−i) for all i and θi, that

is, undirected strong rationalizability). Thus, we prove that for any fixed profile of

restrictions on exogenous beliefs ∆ the set of strongly ∆-rationalizable paths is contained

in the set of strongly rationalizable paths. It will be clear that the proof can be easily

adapted to obtain the more general path-monotonicity claim.

Theorem 1 Fix a profile ∆ = (∆i,θi)i,∈I,θi∈Θi
of restrictions on exogenous beliefs. Then,

for all steps n > 0 and states θ ∈ Θ, ∅ 6= ζ
(
S∆,n (θ)

)
⊆ ζ (Sn (θ)), that is, for each

(θ, s) ∈ C∆,∞
sb 6= ∅, there exists s′ ∈ S such that (θ, s′) ∈ C∞sb and ζ(s) = ζ(s′).

The assumption that the belief restriction only apply to exogenous beliefs is tight.

In the literature, there are many examples of strong directed rationalizability with

restrictions on the initial beliefs about the opponent’s strategy yielding non-strongly-

rationalizable outcomes (see, e.g., Battigalli & Friedenberg 2012 and Catonini 2019). In

the supplemental appendix, we provide an analogous example of restrictions on non-

initial beliefs about the opponent’s type.

Before the proof of the theorem, we provide an example of path-monotonicity that

highlights the main diffi culty to tackle.
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Example 1 Consider a signaling game between players 1 and 2 with Θ1 = {x, y, z},
S1 = A1 = {`, r}, A2(`) = {a, b}, A2(r) = {c, d, e}, and the following payoffs:

Payoffs of 1 and 2:

after ` a b

θ1 = x 3 1 1 0

θ1 = y 1 0 1 1

θ1 = z 3 1 1 0

after r c d e

θ1 = x 0 0 0 0 0 1

θ1 = y 0 0 0 1 3 0

θ1 = z 0 1 2 0 2 0

We start with Strong Rationalizability, showing all the eliminations for every step.

1. We can only eliminate action r for type x, as it is dominated by action `. Thus,
S1

1 (x) = {`}. [Since no strategy of player 2 is eliminated in the first step, it follows that
in even (odd) steps only eliminations for player 2 (player 1) are possible.]

2. (Player 2 ) Every µ2 ∈ ∆H
sb

(
C1

1,sb

)
assigns probability 0 to type x upon observing

action r (an instance of forward-induction reasoning). With this, action e is never a best

reply. Hence, C2
2,sb = {a.c, b.c, a.d, b.d}.

3. (Player 1 ) For type y, action r is not a best reply to any belief over C2
2,sb. Thus,

S3
1 (y) = {`}.
4. (Player 2 ) Every µ2 ∈ ∆H

sb

(
C3

1,sb

)
assigns probability 1 to type z given action r. Thus,

C4
2,sb = {a.c, b.c}.
5. (Player 1 ) Given this, type z expects to obtain 0 from r and at least 1 from `. Thus,

S5
1 (y) = {`}.
No remaining strategy of player 2 can be eliminated. So we have

C∞1,sb = Θ1 × {`} ,
C∞2,sb = {a.c, b.c} .

Thus, the strongly rationalizable paths are (`, a) and (`, b) for each of player 1.

Now consider the following restrictions to the exogenous beliefs of player 2 (only): let ∆2

collect all the CPSs µ2 that initially assign probability 1 to type z, i.e., µ2({z}×S1|∅) = 1.

Strong ∆-Rationalizability is given by the following steps:

∆,1. As above, action r is eliminated for type x, S∆,1
1 (x) = S1

1 (x) = {`}, but now some
strategies of player 2 are eliminated. By the chain rule, every µ2 ∈ ∆2 assigns probability

1 to z given `, if µ2({z, `} |∅) > 0, and/or given r, if µ2({z, r} |∅) > 0. Thus, player 2
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best replies with a after ` and/or with c after r: C∆,1
2,sb = {a.c, b.c, a.d, a.e}.

∆,2 . As in strong rationalizability, action e is never a best reply given r; hence, strategy
a.e of player 2 is eliminated: C∆,2

2,sb = {a.c, b.c, a.d}. Moreover, for type z, r is dominated
by ` w.r.t. strategies in C∆,1

2,sb; thus, S
∆,2
1 (z) = {`}.

∆,3 . For type y, r is dominated by ` over C∆,2
2,sb; thus, S

∆,3
1 (z) = {`}. Moreover, every

µ2 ∈ ∆H
sb

(
C∆,2

1,sb

)
assigns probability 1 to type y given action r; thus, So, C∆,3

2,sb = {a.d}.
We pinned down one strategy for (each type of) each player:

C∆,∞
1,sb = Θ1 × {`} ,

C∆,∞
2,sb = {a.d} .

The strongly ∆-rationalizable path is (`, a) for each type of player 1. In compliance with

Theorem 1, this is one of the two strongly rationalizable paths. Note, however, that the

strongly∆-rationalizable reaction of player 2 to r is d, whereas the strongly rationalizable

one was c. N

Given that the two elimination procedures may induce completely disjoint off-path

behaviors, proving path-monotonicity is hard. It is even hard to grasp how path-

monotonicity can hold in absence of any discipline on the rationalizable off-path behav-

iors. Before providing the proof of Theorem 1, we propose a different, intuitive argument

of “why path-monotonicity cannot fail”, which is a kind of proof by contradiction.

The set of strongly ∆-rationalizable paths has a sort of “best reply property”, so

that, if a player does not entertain deviations outside that set of paths, every move

can be justified under the belief that the others will not leave those paths either. Now

suppose for a moment that, at some step of strong rationalizability, for the first time,

a player leaves one of the strongly ∆-rationalizable paths– or at least does so whenever

she believes that the others will stay. Given what we said before, this player must be

considering a deviation outside of the strongly ∆-rationalizable paths. Moreover, since

this is the first step where this phenomenon occurs, at the previous step everyone could

find a reason to stay on the strongly ∆-rationalizable paths while believing that the

others were staying as well. This means that all the opponents of our player may be

surprised by her deviation. Surprise implies belief revision, so that every belief about the

continuation play is possible (i.e., consistent with the chain rule). But this means that
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our player finds a reason to deviate under all possible conjectures about the opponents’

reactions. These two considerations combined imply that the set of possible continuation

paths after the deviation must have, again, a sort of best reply property. In light of this,

and of the absence of restrictions to off-path beliefs, some of these continuation strategies

should have survived also strong ∆-rationalizability. (A recursive argument is required

to rule out deviations from those continuation paths.) But this contradicts the fact that

strong ∆-rationalizability ruled out such a deviation for our player.

3.1 Proof of Theorem 1

Non-emptiness follows from Lemma 3. Here we only focus on the path-inclusion. Com-

paring directly strong rationalizability and strong ∆-rationalizability is diffi cult. As we

have just seen through the example, the two procedures may substantially depart in

terms of strategies, and this also makes it hard to compare them in terms of outcomes.

To overcome this diffi culty, we construct a sequence of elimination procedures that grad-

ually transform strong ∆-rationalizability into strong rationalizability,19 and we prove

step-by-step path-inclusion between each pair of consecutive, “similar”procedures.

Let K be the number of steps that it takes for strong rationalizability to converge:

CK−1
sb ⊂ CK

sb = C∞sb (⊂ denotes strict inclusion). Note that K is well defined because the

game is finite.20 For each k = 0, ..., K, we introduce Procedure k, which performs the

first k steps of elimination without belief restrictions and the following steps with the

belief restrictions. Thus, Procedure 0 coincides with strong ∆-rationalizability, while the

first K steps of Procedure K coincide with strong rationalizability. Hence, the step-K

path-inclusions between Procedure 0 and Procedure 1, Procedure 1 and Procedure 2, and

so on up to Procedure K prove the theorem.

Now we define formally such elimination procedures, denoted by ((Xn
k)∞n=0)

K

k=0
. If

everything is strongly rationalizable, there is nothing to prove, so suppose that strong

rationalizability deletes some pair (θi, si) for at least one player i, so that K > 0.

19The same idea appears in Perea (2018), who compares different orders of elimination of strong
rationalizability in games with perfect information through a sequence of pairwise similar elimination
orders. Other intuitions used in the proof appear in Catonini (2020).
20A generalization of our argument for (classes of) infinite games is available upon request.
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As anticipated, for k = 0, we have strong ∆-rationalizability:

(Xn
0 )∞n=0 =

(
C∆,n

sb

)∞
n=0

.

For each k = 1, ..., K, define ((Xn
k,i)i∈I)

∞
n=0 as follows. Let X0

k = Θ× S.
For all 1 ≤ n ≤ k and i ∈ I,

Xn
k,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩n−1

m=0∆H
sb(Xm

k,−i), si ∈ ri,θi(µi)
}
. (1)

Thus, for k > 0, steps n = 1, ..., k of the k-procedure coincide with strong rationalizabil-

ity: Xn
k = Cn

sb for n ≤ k.

For all n > k and i ∈ I, let

Xn
k,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩n−1

m=0∆H
sb(Xm

k,−i) ∩∆i,θi , si ∈ ri,θi(µi)
}
. (2)

Thus, the k-procedure deviates from strong rationalizability from step n = k+1 onwards,

because it starts imposing the ∆-restrictions on justifying beliefs only from step k + 1.

It follows that, as anticipated, (Xn
K)∞n=0 is an elimination procedure which coincides

with strong rationalizability (Cn
sb)∞n=0 for the first K steps, so obtaining the strongly

rationalizable profiles, but then proceeds to (possibly) delete more profiles by adding

the ∆-restrictions. More generally, no procedure needs to converge by step K (although

some may also converge at an earlier step), but for our purpose we can focus on the first

K steps of all procedures.

We are going to prove that, for each step of elimination n, the set of θ-dependent paths

that are consistent with step n weakly expands as k increases, which implies the thesis.

To do so, we proceed in this order: first we fix k ∈ {1, ..., K} and consider Procedure
k− 1 and Procedure k; then, we prove the path-inclusion between the two procedures at

every step of elimination n by induction on n.

First we provide an intuition of how we exploit the similarity between the two proce-

dures and how the assumption of exogenous restrictions makes their comparison possible.

From this intuition, we will derive the two-fold inductive hypothesis for the formal proof.

To simplify notation, we drop the indexes k− 1 and k of the two procedures and we call

them “P”and “Q”: ((Pn
i )i∈I)

∞
n=0 = ((Xn

k−1,i)i∈I)
∞
n=0 and ((Qn

i )i∈I)
∞
n=0 = ((Xn

k,i)i∈I)
∞
n=0.
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We are also going to apply the notation “|Ĥ”to (profiles of) strategies or type-strategy
pairs in order to restrict the domain of strategies to a subset of histories Ĥ. Furthermore,

for any subset X⊆ Θ× S, we let

H (X) =
{
h ∈ H : ∃ (θ, s) ∈ X, h ≺ ζ̄ (θ, s)

}
= {h ∈ H : ∃θ ∈ Θ,∃s ∈ Xθ, h ≺ ζ (s)}

denote the set of non-terminal histories that realize for some (θ, s) ∈ X. With this, for

any X−i ⊆ Θ−i × S−i, we also let

H (X−i) = H (Θi × Si × X−i)

denote the set of non-terminal histories that realize for some (θ−i, s−i) ∈ X−i and (θi, si) ∈
Θi × Si.

P and Q coincide with Strong Rationalizability for steps n ∈ {1, ..., k − 1} and depart
at step n = k.

At step n = k, P adopts the belief restrictions and Q does not, so:

Pn ⊆ Qn for n = k.

At step n + 1 = k + 1 both P and Q adopt the restrictions, but P imposes strong

belief in smaller strategy sets and therefore, along the paths consistent with these sets, it

remains more restrictive:

Pn+1|H(Pn) ⊆ Qn+1|H(Pn) for n = k. (3)

At step n+ 2 = k + 2, things get complicated.

First: Is this step of procedure P still still more restrictive than Q regarding beliefs

about the co-players’types and moves at the histories in H(Pn), as equation (3) seems

to suggest?

The answer is yes, but only thanks to the assumption of restrictions on the exogenous

beliefs. Restrictions on the beliefs about the endogenous/strategic uncertainty could

allow player i to believe in some (θ−i, s−i) ∈ Pn+1
−i but not in its counterpart

(
θ−i, s

′
−i
)
∈
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Qn+1
−i with s−i|H(Pn) = s′−i|H(Pn). The role of restricting only the initial beliefs is more

subtle. Strong belief in Pn+1
−i and in Qn+1

−i may induce different beliefs about θ−i at some

history h′ ∈
(
H(Pn+1

−i ) ∩H(Qn+1
−i )

)
\H(Pn). If there were restrictions on such beliefs at

h′, it could well be that some of the beliefs derived from Qn+1
−i were incompatible with the

restrictions. Via the chain rule, this could also rule out some beliefs at some h ∈ H(Pn)

such that h ≺ h′.

But this not the end of the story. Strong belief in Qn+1
−i may be more restrictive than

in Pn+1
−i regarding behavior outside of H(Pn), even at histories that are consistent with

both Pn+1
−i and Qn+1

−i . This is because the inclusion of equation (3) is restricted to H(Pn).

Thus, strong belief in Qn+1
−i may rule out some belief about the reactions of the co-players

to a deviation of i from H(Pn) which is instead allowed by strong belief in Pn+1
−i . With

this, there could be a deviation from one of the paths consistent with Pn+2 which player

i expects to lead out of H(Pn) and be always profitable under strong belief in Qn+1
−i . This

is what makes it hard to prove that

Qn+2|H(Pn+1) ⊇ Pn+2|H(Pn+1) for n = k. (4)

What guarantees that such a deviation does not exist? We are going to argue that

H(Pn) ⊇ H(Qn+1), so that no strategy in Qn+2
i ⊆ Qn+1

i (i.e., no strategy that player i

could ever find profitable at step n+ 2 of procedure Q) leads out of H(Pn) (actually, of

H(Pn+1) ⊆ H(Pn)) under strong belief that the co-players follow strategies in Qn+1
−i .

Here is where the similarity between the two procedures comes into play: H(Pn) ⊇
H(Qn+1) is a reverse inclusion compared to the path-inclusion we want to prove, but

with procedure Q one step ahead of procedure P . Thus, to see why the inclusion holds,

we must flip the roles of the two procedures and start from the trivial observation that,

since Qn ⊆ Qn−1 = Pn−1 for each n ≤ k,

Qn ⊆ Pn−1 for n = k.

Next, we consider step n+ 1 of Q and step n of P . Both steps use the belief restrictions,

as Q introduces the restrictions only one step later than P . Thanks to this similarity, we
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can argue as above (cf. equation (3)) to obtain

Qn+1|H(Qn) ⊆ Pn|H(Qn) for n = k. (5)

Thus, as H(Qn) ⊇ H(Qn+1), we have

H(Pn) ⊇ H(Qn+1) for n = k.

Proving (5) was easy because we could rely on the inclusion Qn ⊆ Pn−1, which is in terms

of (full) strategies. For n > k, we run into the same complications we had for (4), but we

can solve them exactly in the same way by first showing that H(Qn−1) ⊇ H(Pn−1). The

direction of this inclusion is the one of the path-inclusion we want to prove, but it involves

step n− 1 of both procedures, so we can take it as induction hypothesis. With this, we

can then take as induction hypothesis also the reverse inclusion H(Pn−1) ⊇ H(Qn).

For the formal proof, our induction hypothesis is a bit stronger than a double inclusion

between the histories (and also the paths) induced by the two procedures. At those

histories, we will need to mimic the beliefs player i can have at some step of a procedure

for the corresponding step of the other procedure. For this, we need the two procedures

to correspond in terms of restricted strategies, in the following way:

IH1(n) for every i ∈ I and (θi, si) ∈ Xn
k−1,i, there is ŝ

(θi,si)
i ∈ Si such that (θi, ŝ

(θi,si)
i ) ∈ Xn

k,i

and ŝ(θi,si)
i (h) = si(h) for all h ∈ H(Xn−1

k−1) (thus, step n of the (k − 1)-procedure

path-refines step n of the k-procedure);

IH2(n) for every i ∈ I and (θi, si) ∈ Xn
k,i, there is s̃

(θi,si)
i ∈ Si such that (θi, s̃

(θi,si)
i ) ∈ Xn−1

k−1,i

and s̃(θi,si)
i (h) = si(h) for all h ∈ H(Xn−1

k ) (thus, step n of the k-procedure path-

refines step n− 1 of the (k − 1)-procedure);

For n = K, IH1 implies that, for each (θ, s) ∈ XK
k−1, there exists s

′ ∈ S such that

(θ, s′) ∈ XK
k and ζ(s) = ζ(s′). Since k is arbitrary in {1, ..., K}, this implies that for each

(θ, s) ∈ XK
0 ⊆ C∆,∞

sb , there exists s′ ∈ S such that (θ, s′) ∈ XK
K = C∞sb and ζ(s) = ζ(s′),

that is, strong ∆-rationalizability path-refines strong rationalizability.

The rest of this section is dedicated to proving IH1 and IH2, following the strategy

we outlined above. The formal proofs of Claims 1-4 are deferred to the Appendix.
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Basis steps

IH2(n = k) comes from the observation that, by inspection of (1), Xk
k ⊆ Xk−1

k =

Ck−1
sb = Xk−1

k−1; IH1(n = k) comes from (for all i ∈ I)

Xk
k−1,i =

{
(θi, si) ∈ Θi × Si : ∃µi ∈ ∩k−1

m=0∆H
sb(Xm

k−1,−i) ∩∆i,θi , si ∈ ri,θi(µi)
}

⊆
{

(θi, si) ∈ Θi × Si : ∃µi ∈ ∩k−1
m=0∆H

sb(Xm
k,−i), si ∈ ri,θi(µi)

}
= Xk

k,i,

where the first equality holds by (2), the last equality holds by (1), and the inclusion

follows from the fact that, by (1), Xm
k−1,−i = Cm

sb,−i = Xm
k,−i for all m = 0, ..., k − 1.

Inductive steps

The proofs of two inductive steps, IH1(n+1) and IH2(n+1), are essentially identical,

because both procedures
(
Xn
k−1

)∞
n=0

and (Xn
k)∞n=0 are defined by (2) at each step n > k.

We start from the proof for IH2(n+ 1), which uses IH2(n) and IH1(n). We relegate the

proof of IH1(n + 1), which uses IH1(n) and IH2(n + 1) (which we prove first), to the

appendix.

Inductive step IH2
Suppose IH1(n)-IH2(n) hold. We must show that IH2(n + 1) holds. Fix i ∈ I

and (θi, si) ∈ Xn+1
k,i . We are going to show the existence of a CPS µ̃(θi,si) = µ̃i ∈

∩n−1
m=0∆H

sb(Xm
k−1,−i) ∩ ∆i,θi and of a strategy s̃

(θi,si)
i = s̃i ∈ ri,θi(µ̃

i) ⊆ Xn
k−1,i such that

s̃i(h) = si(h) for all h ∈ H(Xn
k) (both the CPS and the strategy depend on the fixed

pair (θi, si), thus, s̃i = s̃
(θi,si)
i ; to ease notation, in what follows we do not make the

dependence explicit). Since the choice of i ∈ I and (θi, si) ∈ Xn+1
k,i is arbitrary, this will

prove IH2(n+ 1).

By definition of Xn+1
k,i (see eq. (2)), there is some µi ∈ ∩nm=0∆H

sb(Xm
k,−i) ∩ ∆i,θi such

that si ∈ ri,θi(µi).
Using IH2(n), we can construct a CPS µ̃i for step n of procedure k − 1 that mimics

µi along the paths ζ̄(Xn
k) that are consistent with step n of procedure k.

Claim 1 There exists µ̃i ∈ ∩n−1
m=0∆H

sb(Xm
k−1,−i) ∩∆i,θi such that, for every h ∈ H (Xn

k) ∩
Hi(si),

∀(θ−i, z) ∈ Θ−i × ζ̄(Xn
k), µ̃i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (6)
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IH2(n) also implies that the histories along those paths, H (Xn
k), are also consistent

with step n− 1 of procedure k − 1.

Claim 2 H(Xn
k) ⊆ H(Xn−1

k−1).

In what follows, we will also use the following implication of standard dynamic pro-

gramming arguments.

Claim 3 Fix a subset of histories H̃ such that, for every h ∈ H̃, si is a continuation

best reply to µ̃i(·|h) for θi. There exists s̃i ∈ ri,θi(µ̃
i) such that s̃i(h) = si(h) for every

h ∈ H̃.

Claim 2 allows to apply IH1(n) and say that every sequential best reply s̃i to µ̃
i,

which survives step n of procedure k − 1, has a counterpart s̃′i that survives step n or

procedure k and mimics s̃i at each h ∈ H (Xn
k) ∩H(s̃′i). So, since obviously s̃

′
i does not

leave the paths ζ̄(Xn
k), neither s̃i does, and hence it yields the same expected payoffunder

µ̃i(·|h) and µi(·|h), just like si, if h ∈ H(si). But then the fact that si is a continuation

best reply to µi at h, implies that it is also a continuation best reply to µ̃i at h.21

Claim 4 For each h ∈ H (Xn
k)∩Hi(si), strategy si is a continuation best reply to µ̃

i(·|h)

for θi.

So, by Claim 3, starting from the initial history and moving downwards, we can

construct a sequential best reply to µ̃i that prescribes the same moves as si at all h ∈
H (Xn

k) ∩ H(si). Now fix µ̃
i as per Claim 1. From equation (2) it follows that {θi} ×

ri,θi(µ̃
i) ⊆ Xn

k−1,i. To conclude the proof, we show the existence of s̃i ∈ ri,θi(µ̃
i) such

that s̃i(h) = si(h) for all h ∈ H(Xn
k). By Claim 3 with H̃ = H(Xn

k) ∩ Hi(si), this is a

consequence of Claim 4. (For each h ∈ H(Xn
k)\Hi(si), since h 6∈ Hi(s̃i), we can always

set s̃i(h) = si(h) because we use the notion of sequential best reply which only refers to

the histories that are consistent with the strategy.) �

21This argument requires history h to be consistent with some sequential best reply to µ̃i, and this
can ensured with an inductive application of Claim 3.
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4 Bayesian games

In the game with payoff uncertainty Γ, players’ types θ parameterize the payoff func-

tions to express incomplete and asymmetric information about them. Yet, the previous

analysis does not prevent the parameters from containing payoff-irrelevant components;

that is, the analysis remains valid if, for some player i and some types θ′i 6= θ′′i , we

have uj (θ′i, θ−i, z) = uj (θ′′i , θ−i, z) for all j ∈ I, θ−i ∈ Θ−i, and z ∈ Z. However, we

want to introduce such payoff-irrelevant components explicitly, in the following way. An

elaboration of Γ =
〈
I, (Θi, Ai,Ai(·), ui)i∈I

〉
is a structure

Γe =
〈
I, (Ti, Ai,Ai(·), ue

i )i∈I
〉

such that, for every player i ∈ I, Ti = Θi × Ei, where Ei is a finite nonempty set,

ue
i : (×j∈ITj)× Z → R, and

ue
i

(
(θk, ek)k∈I , z

)
= ui

(
(θk)k∈I , z

)
for all (θk, ek)k∈I ∈ ×k∈ITk and z ∈ Z. In words, each type ti = (θi, ei) is made of the

payoff-relevant component θi and of a payoff-irrelevant component ei.

We are going to use the new types (Ti)i∈I as parts of a type structure à la Harsanyi

(1967-68). Hence, we assign to each type ti a probability measure βi(ti) over the oppo-

nents’types T−i, so that ti is ultimately associated with a hierarchy of beliefs about the

payoff-relevant parameters θ: the first-order belief is the marginal of βi(ti) over Θ−i; the

second-order belief is the pushforward of βi(ti) through the maps

(θj, tj)j 6=i ∈ T−i 7→
(
θj,margΘ−jβj(tj)

)
j 6=i
∈ (Θj ×∆(Θ−j))j 6=i ;

and so forth. A Bayesian elaboration of Γ =
〈
I, (Θi, Ai,Ai(·), ui)i∈I

〉
is obtained from

adding the profile of belief maps (βi : Ti → ∆ (T−i))i∈I to an elaboration:

Γb =
〈
I,
(
Ti, Ai,Ai(·), ub

i , βi
)
i∈I

〉
,

where ub
i = ue

i for each i ∈ I. Note that an elaboration is essentially the same as the

original game with payoff uncertainty when each set Ei is a singleton {ēi}, so that Θ and
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T are isomorphic (in an obvious sense). In this particular case, a Bayesian elaboration

is also called “simple Bayesian game” and it adds to Γ a particular kind of profile of

type-dependent restrictions on exogenous beliefs: recalling that we let ∆̄i,θi ⊆ ∆ (Θ−i)

denote the restricted set of initial marginal beliefs of type θi of player i about co-players’

types, we have that ∆̄i,θi = {βi (θi, ēi)} is a singleton for all i and θi.

Obviously, we can define strong rationalizability for an elaboration Γe as for Γ

with each set Θi replaced by Ti: for each i ∈ I, Ce,0
i,sb = Ti × Si, and for each n ∈ N

Ce,n
i,sb =

{
(ti, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(Ce,m

−i,sb), si ∈ re
i,ti

(µi)
}
,

where,

re
i,ti

(
µi
)

=

{
s̄i : ∀h ∈ Hi (s̄i) , s̄i ∈ arg max

si∈Si(h)
Eµi(·|h) (ue

i (ti, ·, ζ (si, ·)))
}

for every CPS µi ∈ ∆H (T−i × S−i). Of course, by taking the sections of these sets at any
given type, we obtain the strongly n-rationalizable strategies for that type:

Se,n
i (ti) =

(
Ce,n
i,sb

)
ti

:=
{
si : (ti, si) ∈ Ce,n

i,sb

}
.

The following lemma formalizes the idea that the payoff-irrelevant component of types

does not affect strong rationalizability.

Lemma 4 Fix any elaboration Γe of Γ. For all i ∈ I, n ∈ N0, and (θi, ei) ∈ Ti,

Se,n
i (θi, ei) = Sni (θi).

Now impose the belief system µi that justifies a pair (ti, si) to be consistent with

βi (ti) at the outset. In this way, we define strong rationalizability for a Bayesian
elaboration Γb: for each i ∈ I, Cb,0

i,sb = Ti × Si, and for each n ∈ N

Cb,n
i,sb =

{
(ti, si) : ∃µi ∈ ∩n−1

m=0∆H
sb(Cb,m

−i,sb),margT−iµ
i (·|∅) = βi (ti) , si ∈ rb

i,ti
(µi)

}
,

where rb
i,ti

(µi) = re
i,ti

(µi) (defined above) for each µi ∈ ∆H (T−i × S−i), because ub
i = ue

i .
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The set of strongly n-rationalizable strategies for type ti in Γb is the section

Sb,n
i (ti) =

(
Cb,n
i,sb

)
ti

:=
{
si : (ti, si) ∈ Cb,n

i,sb

}
.

Strong rationalizability for a Bayesian elaboration is tightly related to strong directed

rationalizability for the original game with payoffuncertainty. The equivalence is obvious

for a simple Bayesian game, where each Ti is isomorphic to Θi (thus set Ti = Θi), and for

each θi, βi(θi) can be taken as the unique initial belief allowed by ∆̄i,θi . Hence, a corollary

of Theorem 1 is that for every θ ∈ Θ, the (nonempty) set of strongly rationalizable paths

of any (finite) simple Bayesian game based on a given (finite) multistage game with

payoff uncertainty is included in the set of strongly rationalizable paths of the latter. For

a non-simple Bayesian elaboration Γb of Γ, one can perform an analogous exercise after

defining an ancillary game with payoff uncertainty Γ̂ with type sets Θ̂i = Ti in place

of Θi. Strong rationalizability in Γb coincides with strong ∆-rationalizability in Γ̂ with

∆̄i,ti = {βi(ti)} for all i ∈ I and ti ∈ Θ̂i; strong rationalizability in Γ coincides with

strong rationalizability in Γ̂ because Γ̂ is an elaboration of Γ and thus Lemma 4 applies;

the two things combined, via Theorem 1, yield the following result (the proof is omitted).

Theorem 2 Fix any Bayesian elaboration Γb of Γ. Then, for every n > 0, for each

(θ, e) ∈ T , ∅ 6= ζ
(
Sb,n (θ, e)

)
⊆ ζ (Sn (θ)), that is, for each (θ, e, s) ∈ Cb,∞

sb 6= ∅, there
exists s′ ∈ S such that (θ, s′) ∈ C∞sb and ζ(s) = ζ(s′).

5 Robust Implementation

We consider a classical mechanism design setting, which we formalize as follows. Fix a

finite economic environment

E =
〈
I, Y, (Θi, vi)i∈I

〉
,

where Y– a subset of a Euclidean space– is an outcome space and each vi : Θ× Y → R
is a parameterized utility function. A special case of interest for the outcome space is a

space of lotteries: Y = ∆ (X), where X is a finite set of deterministic outcomes. In this

case, vi (θ, y) has to be interpreted as the vNM expected utility of lottery y given state of
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nature θ. The economic environment collects the outcomes that the designer can assign

to players and their preferences for such outcomes. A multistage mechanism (with

observable actions) is a game form

M =
〈
I, H̄, g

〉
,

where g : Z → Y is an outcome function defined on the set of terminal histories deter-

mined by the game tree H̄. Thus, the mechanism specifies the rules of the game that

determine the outcome. A pair (E ,M) yields a game with payoff uncertainty

Γ (E ,M) =
〈
I, H̄,

(
Θi, (ui,θ = vi,θ ◦ g)θ∈Θ

)
i∈I

〉
,

which contains both the rules of the game and the payoffs associated with the terminal

histories: ui,θ (z) = vi,θ (g (z)) for all θ ∈ Θ and z ∈ Z. Finally, we introduce a social
choice function

f : Θ→ Y,

representing the outcome the designer would want to realize as a function of players’

types.

We are interested in the possibility of implementing, or at least virtually implementing,

the social choice function; that is, we look for a mechanism where players of any types

θ will always reach a terminal history z so that g(z) = f(θ), or at least g(z) ≈ f(θ) in

a sense to be made precise. Of course, the θ-dependent predicted path depends on the

adopted solution concept. Following Mueller (2016), we adopt strong rationalizability

and we focus on virtual implementation (v-implementation). Everything in the analysis

is also valid for “exact”implementation.

Definition 1 Social choice function f is v-implementable under strong rationalizability (in
environment E) if, for every ε > 0, there exists a multistage mechanism M such that,

in game with payoff uncertainty Γ (E ,M), for every θ ∈ Θ and s ∈ S∞ (θ) 6= ∅,
‖g (ζ (s))− f (θ)‖ < ε.22

22In the definition, we require that S∞ (θ) 6= ∅ to avoid that the “for all ...”condition hold vacuously.
In fact, we know from Lemma 3 that S∞ (θ) 6= ∅ for all θ ∈ Θ.

28



Bergemann & Morris (2009) introduce the notion of robust implementation, which

requires the mechanism to implement the social choice function for any exogenous re-

strictions to players’collectively coherent hierarchies of beliefs about types, such as the

existence of a common prior. As anticipated in the Introduction, in a static setting,

one can show that implementation under rationalizability for static games with payoff

uncertainty is robust, since– by monotonicity of probability-1 belief– the introduction

of a Harsanyi type structure that restricts players’belief hierarchies can only reduce the

set of their (interim correlated) rationalizable strategies.23 As shown in Example 1, this

is not true for strong rationalizability, due to the non-monotonicity of strong belief. For

this reason, it was an open question whether Mueller’s (2016) notion of implementation

is robust in the sense of Bergemann & Morris (2009).

Definition 2 Social choice function f : Θ → Y is robustly v-implementable under
strong rationalizability (in environment E) if, for every ε > 0, there exists a multistage

mechanismM such that, in every Bayesian elaboration Γb (E ,M) of the game with payoff

uncertainty Γ (E ,M), for all t = (θ, e) ∈ T and s ∈ Sb,∞ (t) 6= ∅, ‖g (ζ (s))− f (θ)‖ < ε.

In light of Theorem 2, we can give a positive answer to the open question.

Corollary 1 Fix a finite economic environment E and a social choice function f : Θ→
Y . If f is v-implementable under strong rationalizability, then f is also robustly v-

implementable under strong rationalizability.

Proof. Suppose that f is v-implementable under strong rationalizability and letM be

a mechanism such that, in game with payoff uncertainty Γ (E ,M), for all θ ∈ Θ and s ∈
S∞ (θ), ‖g (ζ (s))− f (θ)‖ < ε. Take any Bayesian elaboration Γb (E ,M) of Γ (E ,M). By

Theorem 2, for all (θ, e) ∈ Θ×E = T and s ∈ Sb,∞ (θ, e), ∅ 6= ζ
(
Sb,∞ (θ, e)

)
⊆ ζ (S∞ (θ)).

It follows that, for all t = (θ, e) ∈ T and s ∈ Sb,∞ (t) 6= ∅, ‖g (ζ (s))− f (θ)‖ < ε. �

23Interim correlated rationalizbaility is the appropriate notion of rationalizability for Bayesian games.
See Bergemann & Morris (2012), Battigalli et al. (2011), and the relevant references therein.
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6 Appendix

This section contains the proofs omitted from the main body of the paper (with the

exception of the detailed proof of inductive step IH1 in the proof of Theorem 1, which is

contained in the Supplemental Appendix).

6.1 Proof of Lemma 2

We prove this result by contraposition. Suppose that si /∈ ri,θi (µi). We need to show

that there is some h̄ ∈ Hi (si) such that, for every s′i ∈ Si
(
h̄
)
, if s′i

(
h̄
)

= si
(
h̄
)
, then s′i is

not a continuation best reply to µi(·|h̄) for θi. Let HD
i (si, µ

i) denote the set of histories

h ∈ Hi (si) such that si is not a continuation best reply to µi (·|h). Since the game is

finite, HD
i (si, µ

i) has at least one maximal element h̄, that is, h̄ ∈ HD
i (si, µ

i) is not the

strict prefix of any other h ∈ HD
i (si, µ

i). Since h̄ ∈ HD
i (si, µ

i), there is some s̄i ∈ Si
(
h̄
)

such that

Eµi(·|h̄) (Ui(θi, s̄i, ·)) > Eµi(·|h̄) (Ui(θi, si, ·)) . (7)

Pick any s′i ∈ Si
(
h̄
)
such that s′i

(
h̄
)

= si
(
h̄
)
(this includes s′i = si). To take care of the

possibility that
(
h̄, (si

(
h̄
)
, a−i)

)
∈ Z for some a−i and to ease notation, for all z such

that µi
(
Θ−i × S−i (z) |h̄

)
> 0 and all (θ−i, s−i) ∈ Θ−i × S−i (z), write

µi (θ−i, s−i|z) =
µi
(
θ−i, s−i|h̄

)
µi
(
Θ−i × S−i (z) |h̄

) ,
so that

Eµi(·|z) (Ui(θi, s
′
i, ·)) =

∑
θ−i∈Θ−i

µi ({θ−i} × S−i (z) |z)ui (θi, θ−i, z) .

With this, Eµi(·|h̄) (Ui(θi, s
′
i, ·)) can be decomposed as follows:

Eµi(·|h̄) (Ui(θi, s
′
i, ·))

=
∑

a−i:µi(Θ−i×S−i(h̄,a−i)|h̄)>0

µi
(
Θ−i × S−i

(
h̄, a−i

)
|h̄
)
Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, s

′
i, ·)) .
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By choice of h̄, si is a continuation best reply to each µi (·|h) with h =
(
h̄, (si

(
h̄
)
, a−i)

)
∈

H. Thus,

Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, si, ·)) ≥ Eµi(·|(h̄,(si(h̄),a−i))) (Ui(θi, s
′
i, ·))

for all a−i with µi
(
Θ−i × S−i

(
h̄, a−i

)
|h
)
> 0 (the other action profiles in A−i

(
h̄
)
do not

affect expected payoff calculations). It follows that

Eµi(·|h̄) (Ui(θi, si, ·)) ≥ Eµi(·|h̄) (Ui(θi, s
′
i, ·)) . (8)

Equations (7) and (8) combined yield

Eµi(·|h̄) (Ui(θi, s̄i, ·)) > Eµi(·|h̄) (Ui(θi, s
′
i, ·)) ,

so s′i cannot be a continuation best reply to µ
i
(
·|h̄
)
. �

6.2 Omitted parts of the proof of Theorem 1

6.2.1 Proof of Claim 1

We are going to construct an array of beliefs µ̂i = (µ̂i (·|h))h∈Hi such that, for each h ∈ Hi:

F0. µ̂i (Θ−i × S−i(h)|h) = 1;

F1. for all h′ such that h ≺ h′, for each E ⊆ Θ−i × S−i(h′),

µ̂i (E|h′) µ̂i (Θ−i × S−i(h′)|h) = µ̂i (E|h) ;

F2. for each h ∈ H and m = 0, ..., n− 1, if h ∈ H(Xm
k−1,−i), then µ̂

i
(
Xm
k−1,−i|h

)
= 1;

F3. margΘ−iµ̂
i (·|∅) = margΘ−iµ

i (·|∅);

F4. for every h ∈ H (Xn
k) ∩Hi(si),

∀(θ−i, z) ∈ Θ−i × ζ̄(Xn
k), µ̂i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (9)
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By F0 and F1, µ̂i is a forward-consistent belief system. By F2, it strongly believes

X1
k−1,−i, ...,X

n−1
k−1,−i. Hence, by Lemma 1, there exists a CPS µ̃

i ∈ ∩n−1
m=0∆H

sb(Xm
k−1,−i) such

that µ̃i(·|h) = µ̂i(·|h) for all h ∈ H(si). By µ̃
i(·|∅) = µ̂i(·|∅) and F3, we get µ̃i ∈ ∆i,θi .

Finally, for every h ∈ H (Xn
k) ∩Hi(si), µ̃

i(·|h) = µ̂i(·|h) and F4 yield (6).

Now we start with the construction. By IH2(n), for every (θ−i, s−i) ∈ Xn
k,−i, there

exists a profile (s̃
(θj ,sj)
j )j 6=i ∈ S−i such that (θj, s̃

(θj ,sj)
j )j 6=i ∈ Xn−1

k−1,−i and, for each j 6= i,

s̃
(θj ,sj)
j (h) = sj(h) for every h ∈ H(Xn−1

k ). With this, define a map η̃ : Θ−i × S−i →
Θ−i × S−i as follows:

∀ (θ−i, s−i) ∈ (Θ−i × S−i) , η̃ (θ−i, s−i) =

{
(θj, s̃

(θj ,sj)
j )j 6=i

(θ−i, s−i)

if (θ−i, s−i) ∈ Xn
k,−i

otherwise
.

For each h ∈ H (Xn
k), define µ̂i (·|h) as the η̃-pushforward of µi (·|h). For future reference,

observe that

µ̂i
(
Xn−1
k−1,−i|h

)
= µi

(
η̃−1(Xn−1

k−1,−i)|h
)
≥ µi

(
Xn
k,−i|h

)
= 1, (10)

where the first equality is by construction, the inequality is by η̃(Xn
k,−i) ⊆ Xn−1

k−1,−i, and

the last equality is by strong belief in Xn
k,−i. Now define

H̃ =
{
h ∈ H\H (Xn

k) : ∃h̄ ∈ H (Xn
k) , h̄ ≺ h, µ̂i

(
Θ−i × S−i(h)|h̄

)
> 0
}
.

For each h ∈ H̃, let p∗(h) denote the longest h̄ ≺ h with h̄ ∈ H (Xn
k) such that

µ̂i
(
Θ−i × S−i(h)|h̄

)
> 0, and derive µ̂i (·|h) by conditioning µ̂i (·|p∗(h)). To conclude the

construction, fix µ̄i ∈ ∩n−1
m=0∆H

sb(Xm
k−1,−i)∩∆i,θi , and for each h ∈ H\

(
H (Xn

k) ∪ H̃
)

=: Ĥ,

let µ̂i (·|h) = µ̄i (·|h).

First, we show that µ̂i satisfies F2. For each h ∈ H (Xn
k), equation (10) yields

µ̂i
(
Xn−1
k−1,−i|h

)
= 1. For each h ∈ H̃, equation (10) yields µ̂i

(
Xn−1
k−1,−i|p∗(h)

)
= 1, from

which µ̂i
(
Xn−1
k−1,−i|h

)
= 1 follows by construction. For each h ∈ Ĥ and m = 0, ..., n− 1, if

h ∈ H(Xm
k−1,−i), µ̂

i
(
Xm
k−1,−i|h

)
= 1 follows from µ̂i (·|h) = µ̄i (·|h) and µ̄i ∈ ∆H

sb(Xm
k−1,−i).

Next, we show that, for every h ∈ H (Xn
k) and (θ−i, h

′) ∈ Θ−i × (H(Xn
k) ∪ ζ̄(Xn

k)),

µ̂i({θ−i} × S−i(h′)|h) = µi({θ−i} × S−i(h′)|h), (11)
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which yields:

- condition (9) when h′ ∈ ζ̄(Xn
k), thus F4;

- F3 when h and h′ coincide with the initial history;

- and, for future reference,

µ̂i(Θ−i × S−i(h′)|h) = µi(Θ−i × S−i(h′)|h). (12)

By construction, we have

µ̂i({θ−i} × S−i(h′)|h) = µi(η̃−1({θ−i} × S−i(h′))|h).

We need to show that

η̃−1 ({θ−i} × S−i(h′)) = {θ−i} × S−i(h′). (13)

Fix first s−i ∈ S−i such that (θ−i, s−i) ∈ η̃−1 ({θ−i} × S−i(h′)). Then, there exists s′−i ∈
S−i(h

′) such that η̃(θ−i, s−i) = (θ−i, s
′
−i). By definition of η̃, either s

′
−i = s−i, or s−i(h̃) =

s′−i(h̃) for each h̃ ∈ H(Xn−1
k ), hence for each h̃ ≺ h′, given that h′ ∈ H(Xn

k) ∪ ζ̄(Xn
k).

So, s′−i ∈ S−i(h
′) implies s−i ∈ S−i(h

′), i.e., (θ−i, s−i) ∈ {θ−i} × S−i(h
′). Now fix

s−i ∈ S−i(h′). Let (θ−i, s
′
−i) = η̃(θ−i, s−i). By definition of η̃, either s′−i = s−i, or s′−i(h̃) =

s−i(h̃) for each h̃ ∈ H(Xn−1
k ), hence for each h̃ ≺ h′, given that h′ ∈ H(Xn

k) ∪ ζ̄(Xn
k). So

s−i ∈ S−i(h′) implies s′−i ∈ S−i(h′), which means (θ−i, s−i) ∈ η̃−1 ({θ−i} × S−i(h′)).

Finally, we show that µ̂i satisfies F0 and F1.

For each h ∈ H (Xn
k), since µi(Θ−i × S−i(h)|h) = 1, equation 11 with h′ = h yields

F0. For each h ∈ H̃, F0 follows by conditioning. For each h ∈ Ĥ, F0 holds by µ̂i (·|h) =

µ̄i (·|h).

For F1, fix h, h′ ∈ H such that h ≺ h′. We want to show that

∀E ⊆ Θ−i × S−i(h′), µ̂i(E|h′)µ̂i(Θ−i × S−i(h′)|h) = µ̂i(E|h). (14)

This is true if µ̂i(Θ−i × S−i(h
′)|h) = 0, because then µ̂i(E|h) = 0, so suppose that

µ̂i(Θ−i × S−i(h′)|h) > 0.

33



Case 1: h ∈ Ĥ. Then h′ ∈ Ĥ too. Hence, µ̂i (·|h) = µ̄i (·|h) and µ̂i (·|h′) = µ̄i (·|h′), so
µ̂i inherits (14) from µ̄i, which is a CPS.

Case 2: h ∈ H̃. Then µ̂i(·|h) is derived from µ̂i(·|p∗(h)) by conditioning. By µ̂i(Θ−i ×
S−i(h

′)|h) > 0, we have µ̂i(Θ−i×S−i(h′)|p∗(h)) > 0, hence h′ ∈ H̃ too and p∗(h) = p∗(h′).

Thus, µ̂i(·|h′) is derived from µ̂i(·|p∗(h)) too, and (14) follows.

Case 3: h ∈ H (Xn
k). If h′ ∈ H (Xn

k), let h̄ = h′, otherwise, by µ̂i(Θ−i × S−i(h′)|h) > 0,

h′ ∈ H̃, and in this case let h̄ = p∗(h′). Thus, h̄ ∈ H (Xn
k). For each E ⊆ Θ−i × S−i(h̄),

by construction of µ̂i and equation (12), we get

µ̂i(E|h̄)µ̂i(Θ−i × S−i(h̄)|h) = µi(η̃−1 (E) |h̄)µi(Θ−i × S−i(h̄)|h).

Equation (13) implies that η̃−1 (E) ⊆ Θ−i × S−i(h̄), so, since µi is a CPS, we have

µi(η̃−1 (E) |h̄)µi(Θ−i × S−i(h̄)|h) = µi(η̃−1 (E) |h),

and µi(η̃−1 (E) |h) = µ̂i(E|h) by construction of µ̂i. So,

µ̂i(E|h̄)µ̂i(Θ−i × S−i(h̄)|h) = µ̂i(E|h). (15)

If h̄ = h′, we are done. Otherwise, for each E ⊆ Θ−i × S−i(h′), we have

µ̂i(E|h′)µ̂i(Θ−i × S−i(h′)|h) =
µ̂i(E|p∗(h′))

µ̂i(Θ−i × S−i(h′)|p∗(h′))
µ̂i(Θ−i × S−i(h′)|h)

= µ̂i(E|p∗(h′))µ̂i(Θ−i × S−i(p∗(h′))|h)

= µ̂i(E|h),

where the first equality is by definition of µ̂i(E|h′), the second equality follows from Case
2, and the third equality holds by equation (15) with h̄ = p∗(h′). �

6.2.2 Proof of Claim 2

Fix ŝ ∈ ProjSXn
k . By IH2(n), there exists ŝ

′ ∈ ProjSXn−1
k−1 such that ŝ

′(h̃) = ŝ(h̃) for

every h̃ ∈ H(Xn−1
k ) ⊇ H(Xn

k). It follows that ζ(ŝ) = ζ(ŝ′) ∈ ζ̄(Xn−1
k−1). �
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6.2.3 Proof of Claim 3

Construct s̃i as follows. For each h ∈ H̃, let s̃i(h) = si(h). For each h ∈ H\H̃, let
s̃i(h) = s′i(h) for some continuation best reply s′i to µ̃

i(·|h) for θi. It follows from Lemma

2 that s̃i ∈ ri,θi(µ̃
i). �

6.2.4 Proof of Claim 4

First note that H (Xn
k) ∩ Hi(si) is closed with respect to prefixes (predecessors): for

each h ∈ H (Xn
k) ∩ Hi(si) each prefix h′ ≺ h belongs to H (Xn

k) ∩ Hi(si). So, suppose

by way of induction that Claim 4 holds for every h′ ≺ h – this is vacuously true if

h = ∅. Then, setting H̃ = {h′ ∈ H : h′ ≺ h}, Claim 3 guarantees the existence of some

s̃i ∈ ri,θi(µ̃
i) such that s̃i(h′) = si(h

′) for every h′ ≺ h, thus s̃i ∈ Si(h). First, we need

to show that ζ(s̃i, s̃−i) ∈ ζ̄(Xn
k) for every (θ−i, s̃−i) ∈ Suppµ̃i(·|h). So, fix (θ−i, s̃−i) ∈

Suppµ̃i(·|h). By Claim 1, {θi} × ri,θi(µ̃
i) ⊆ Xn

k−1,i, and hence s̃i ∈ ProjSiX
n
k−1,i. So, by

IH1(n) there exists s̃′i ∈ ProjSiX
n
k,i such that s̃

′
i(h) = s̃i(h) for every h ∈ H(Xn−1

k−1).24

Fix
(
θ−i, s̃

′
−i
)
∈ η̃−1((θ−i, s̃−i)) ⊆ Xn

k,−i (map η̃ is defined in the proof of Claim 1).

Obviously, ζ(s̃′i, s̃
′
−i) ∈ ζ̄(Xn

k). For every h̃ ≺ ζ(s̃′i, s̃
′
−i), we have h̃ ∈ H(Xn

k) ⊆ H(Xn−1
k ),

hence s̃−i(h̃) = s̃′−i(h̃) by construction of η̃. Claim 2 gives H(Xn
k) ⊆ H(Xn−1

k−1), therefore

s̃i(h̃) = s̃′i(h̃) as well. It follows that ζ(s̃i, s̃−i) = ζ(s̃′i, s̃
′
−i) ∈ ζ̄(Xn

k).

For each (θ−i, z) ∈ Θ−i × ζ̄(Xn
k), the probability of (θ−i, z) induced by s̃i and µ̃

i(·|h)

(resp., µi(·|h)) is 0, if s̃i 6∈ Si(z), or µ̃i({θ−i} × S−i(z)|h) (resp., µi({θ−i} × S−i(z)|h))

otherwise. Then, by equation (6), s̃i induces the same probability over each (θ−i, z) ∈
Θ−i × ζ̄(Xn

k) under µ̃i(·|h) and under µi(·|h), hence the same distribution over Θ−i × Z,
because the probability induced by s̃i and µ̃i(·|h) over Θ−i ×

(
Z\ζ̄(Xn

k)
)
is zero: as

we have previously shown, for each (θ−i, s̃−i) ∈ Suppµ̃i(·|h), ζ(s̃i, s̃−i) ∈ ζ̄(Xn
k). The

same conclusion can be reached for si in the same way, after observing that for each

(θ−i, s−i) ∈ Suppµi(·|h), since (θi, si, θ−i, s−i) ∈ Xn
k , we have ζ(si, s−i) ∈ ζ̄(Xn

k). So, call

πs̃i and πsi the unique expected payoffs induced by, respectively, (θi, s̃i) and (θi, si) under

both beliefs (µi(·|h) and µ̃i(·|h)). Since s̃i and si are continuation best replies for θi to,

respectively, µ̃i(·|h) and µi(·|h), we have πs̃i ≥ πsi and πsi ≥ πs̃i . Hence, πsi = πs̃i . But

then, also si is a continuation best reply for θi to µ̃
i(·|h). �

24This is the only passage where we use IH1(n) at full power, namely, where it is important (to then
apply Claim 3) that IH1(n) involves all the histories in H(Xn−1

k−1) and not just those in H(Xn
k−1).
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6.3 Proof of Lemma 4

The statement is trivially true for n = 0. Suppose by way of induction that it is true for

each m ≤ n; fix i ∈ I and (θi, ei) ∈ Ti = Θi×Ei arbitrarily. Let s̄i ∈ Sni (θi). Then there

is a CPS µi ∈ ∩n−1
m=0∆H

sb(Cm
−i,sb) such that s̄i ∈ ri,θi(µi). Define µe,i ∈ ∆ (T−i × S−i)H as

follows: for all h ∈ H, s−i ∈ S−i (h), (θ−i, e−i) ∈ T−i,

µe,i (θ−i, e−i, s−i|h) =
1

|E−i|
µi (θ−i, s−i|h) .

It can be checked that µe,i is a CPS, that is, µe,i ∈ ∆H (T−i × S−i). Furthermore, since
µi (·|h) =margΘ−i×S−i(h)µ

e,i (·|h) for each h ∈ H, and the ej-component of the type of

each player j ∈ I is payoff-irrelevant, s̄i ∈ ri,(θi,ei)(µ
e,i). Finally, the aforementioned

marginalization relationship between µi and µe,i and the inductive hypothesis imply that

µe,i ∈ ∩n−1
m=0∆H

sb(Ce,m
−i,sb). Therefore, s̄i ∈ Se,n

i (θi, ei). Conversely, suppose that s̄i ∈
Se,n
i (θi, ei). Then there is a CPS µe,i ∈ ∩n−1

m=0∆H
sb(Ce,m

−i,sb) such that s̄i ∈ ri,(θi,ei)(µ
e,i).

Define µi ∈ (Θ−i × S−i)H as µi (·|h) =margΘ−i×S−i(h)µ
e,i (·|h) for each h ∈ H. It can

be checked that µi is a CPS, that is, µi ∈ ∆H (Θ−i × S−i). Similarly to the previous
argument, since the ej-component of the type of each player j ∈ I is payoff-irrelevant,
s̄i ∈ ri,θi(µi). Furthermore, the marginalization relationship between µi and µe,i and the

inductive hypothesis imply that µi ∈ ∩n−1
m=0∆H

sb(Cm
−i,sb). �
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7 Supplemental Appendix

The first subsection gives a rigorous proof of the inductive step IH1 in the proof of

Theorem 1. The second subsection contains an example where path monotonicity fails

due to a kind of restriction on endogenous beliefs, i.e., beliefs about the co-player type

conditional on the observed action of the co-player.

7.1 Proof of inductive step IH1 in the proof of Theorem 1

Suppose IH1(n)-IH2(n) hold. We proved that IH2(n + 1) holds as well. Thus, we have

IH1(n)-IH2(n+1). We must show that IH1(n+1) holds, that is, step n+1 of the (k − 1)

procedure path-refines step n + 1 of the k-procedure. Fix i ∈ I and (θi, si) ∈ Xn+1
k−1,i.

Similarly to the proof of IH2(n + 1), we are going to show the existence of a CPS

µ̂(θi,si) = µ̂i ∈ ∩nm=0∆H
sb(Xm

k,−i) ∩ ∆i,θi and of a strategy ŝ
(θi,si)
i = ŝi ∈ ri,θi(µ̂

i) ⊆ Xn+1
k,i

such that ŝi(h) = si(h) for all h ∈ H(Xn
k−1).

By definition of Xn+1
k−1,i (see eq. (2)), there is some µ

i ∈ ∩nm=0∆H
sb(Xm

k−1,−i)∩∆i,θi such

that si ∈ ri,θi(µi).

Claim 1-bis. There exists µ̂i ∈ ∩nm=0∆H
sb(Xm

k,−i) ∩ ∆i,θi such that, for every h ∈
H
(
Xn
k−1

)
∩Hi(si),

∀(θ−i, z) ∈ Θ−i × ζ̄(Xn
k−1), µ̂i({θ−i} × S−i(z)|h) = µi({θ−i} × S−i(z)|h). (16)

The proof of Claim 1-bis is identical to the proof of Claim 1 in inductive step IH2, so

we omit it.

Claim 2-bis: H(Xn
k−1) ⊆ H(Xn

k).

Proof. Fix ŝ ∈ ProjSXn
k−1. By IH1(n), there exists ŝ

′ ∈ ProjSXn
k such that ŝ

′(ĥ) =

ŝ(ĥ) for every ĥ ∈ H(Xn−1
k−1) ⊇ H(Xn

k−1). It follows that ζ(ŝ) = ζ(ŝ′) ∈ ζ̄(Xn
k). �

Claim 3-bis: Fix a subset of histories Ĥ such that, for every h ∈ Ĥ, si is a continuation
best reply to µ̂i(·|h) for θi. There exists ŝi ∈ ri,θi(µ̂i) such that ŝi(h) = si(h) for every

h ∈ Ĥ.
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Proof. Construct ŝi as follows. For each h ∈ Ĥ, let ŝi(h) = si(h). For each h ∈ H\Ĥ,
let ŝi(h) = s′i(h) for some continuation best reply s′i to µ̂

i(·|h) for θi. It follows from

Lemma 2 that ŝi ∈ ri,θi(µ̂i). �

Now fix µ̂i of Claim 1-bis. From equation (2), it follows that {θi} × ri,θi(µ̂i) ⊆ Xn+1
k,i .

To conclude the proof, we show the existence of ŝi ∈ ri,θi(µ̂i) such that ŝi(h) = si(h) for

all h ∈ H(Xn
k−1). By Claim 3-bis with Ĥ = H(Xn

k−1) ∩ Hi(si), this is a consequence of

the following result. (For each h ∈ H(Xn
k−1)\Hi(si), since h 6∈ Hi(ŝi), we can always set

ŝi(h) = si(h) because we use the notion of sequential best reply which only refers to the

histories that are consistent with the strategy.)

Claim 4-bis: For each h ∈ H
(
Xn
k−1

)
∩Hi(si), strategy si is a continuation best reply

to µ̂i(·|h) for θi.

Proof. First note that H
(
Xn
k−1

)
∩Hi(si) is closed with respect to prefixes (predeces-

sors): for each h ∈ H
(
Xn
k−1

)
∩ Hi(si) each prefix h′ ≺ h belongs to H

(
Xn
k−1

)
∩ Hi(si).

So, suppose by way of induction that Claim 4-bis holds for every h′ ≺ h – this is vac-

uously true if h = ∅. Then, setting Ĥ = {h′ ∈ H : h′ ≺ h}, Claim 3-bis guarantees the

existence of some ŝi ∈ ri,θi(µ̂i) such that ŝi(h′) = si(h
′) for every h′ ≺ h, thus ŝi ∈ Si(h).

First, we need to show that ζ(ŝi, ŝ−i) ∈ ζ̄(Xn
k−1) for every (θ−i, ŝ−i) ∈ Suppµ̂i(·|h). So,

fix (θ−i, ŝ−i) ∈ Suppµ̂i(·|h). By Claim 1-bis, ŝi ∈ ProjSiX
n+1
k,i , hence by IH2(n + 1),

there exists ŝ′i ∈ ProjSiX
n
k−1,i such that ŝ

′
i(h) = ŝi(h) for every h ∈ H(Xn

k). Fix(
θ−i, ŝ

′
−i
)
∈ η̂−1((θ−i, ŝ−i)) ⊆ Xn

k−1,−i. Obviously, ζ(ŝ′i, ŝ
′
−i) ∈ ζ̄(Xn

k−1). For every

ĥ ≺ ζ(ŝ′i, ŝ
′
−i), we have ĥ ∈ H(Xn

k−1) ⊆ H(Xn−1
k−1), hence ŝ−i(ĥ) = ŝ′−i(ĥ) by construction

of η̂. Claim 2-bis gives H(Xn
k−1) ⊆ H(Xn

k), therefore ŝi(ĥ) = ŝ′i(ĥ) as well. It follows that

ζ(ŝi, ŝ−i) = ζ(ŝ′i, ŝ
′
−i) ∈ ζ̄(Xn

k−1).

For each (θ−i, z) ∈ Θ−i× ζ̄(Xn
k−1), the probability of (θ−i, z) induced by ŝi and µ̂

i(·|h)

(resp., µi(·|h)) is 0, if ŝi 6∈ Si(z), or µ̂i({θ−i} × S−i(z)|h) (resp., µi({θ−i} × S−i(z)|h))

otherwise. Then, by equation (16), ŝi induces the same probability over each (θ−i, z) ∈
Θ−i× ζ̄(Xn

k−1) under µ̂i(·|h) and under µi(·|h), hence the same distribution over Θ−i×Z,
because the probability induced by ŝi and µ̂

i(·|h) over Θ−i ×
(
Z\ζ̄(Xn

k−1)
)
is zero: as

we have previously shown, for each (θ−i, ŝ−i) ∈ Suppµ̂i(·|h), ζ(ŝi, ŝ−i) ∈ ζ̄(Xn
k−1). The

same conclusion can be reached for si in the same way, after observing that for each

(θ−i, s−i) ∈ Suppµi(·|h), since (θi, si, θ−i, s−i) ∈ Xn
k−1, we have ζ(si, s−i) ∈ ζ̄(Xn

k−1). So,
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call πŝi and πsi the unique expected payoffs induced by, respectively, (θi, ŝi) and (θi, si)

under both beliefs (µi(·|h) and µ̂i(·|h)). Since ŝi and si are continuation best replies for

θi to, respectively, µ̂
i(·|h) and µi(·|h), we have πŝi ≥ πsi and πsi ≥ πŝi . Hence, πsi = πŝi .

But then, also si is a continuation best reply for θi to µ̂
i(·|h). �

7.2 No path-monotonicity under restrictions to endogenous be-

liefs: an example

Consider the signalling game with Θ1 = {0, 1}, A1 = {In,Out}, A2 = {`, c, r} and
payoffs specified by the following table:

Payoffs of 1 and 2:

after In ` c r

θ1 = 0 1 1 -1 0 0 -1

θ1 = 1 0 0 -1 1 1 -1

after Out end

θ1 = 0 0.5 *

θ1 = 1 0.5 *

We first analyze the game with strong rationalizability (that is, without belief re-

strictions), which can be computed by iterated conditional dominance. Note that in this

game there is a one-one correspondence between actions and strategies. For each step,

only one action/strategy for (only one type of) only one player is eliminated:

1. r is the only conditionally dominated action and it is eliminated.

2. Given this, type θ1 = 1 expects to get at most 0 from In, which is eliminated for

this type.

3. Player 2 rationalizes In assuming that it was chosen by type θ1 = 0 (forward

induction), therefore c is eliminated.

4. Finally, type θ1 = 0 expects In to yield payoff 1; thus, Out is eliminated for this

type.

To conclude, Out is the only strongly rationalizable action/strategy for type θ1 = 1,

In is the only strongly rationalizable action/strategy for type θ1 = 0, and ` is the only

strongly rationalizable action/strategy for player 2: C∞sb = {(0, In) , (1, Out)} × {`}.
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Thus, the type-dependent strongly rationalizable paths are

if θ1 = 0 z = (In, `),

if θ1 = 1 z = (Out).

Next we consider directed rationalizability assuming that (only) the following is trans-

parent: player 2 becomes certain of type θ1 = 1 upon observing In, that is,

∆2 =
{
µ̄2 ∈ ∆H(Θ1 × S1) : µ2((1, In) |(In)) = 1

}
.

1. ∆. Both ` and r are eliminated in Step 1 of directed rationalizability because of

the assumed belief-restriction.

2. ∆. Given this, In is eliminated for both types of player 1. This makes it impossible

to rationalize In.

Hence, the only strongly ∆-rationalizable action/strategy of both types of player 1

is Out, and the only strongly ∆-rationalizable action/strategy of player 2 is c: C∆,∞
sb =

{(0, Out) , (1, Out)} × {c}. It follows that the only strongly ∆-rationalizable path is

(Out).
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