GROUPTHINK AND THE FAILURE OF INFORMATION AGGREGATION IN LARGE GROUPS

MATAN HAREL1, ELCHANAN MOSSEL2, PHILIPP STRACK3, AND OMER TAMUZ4

Abstract. We study how effectively long-lived rational agents learn from repeatedly observing each others’ actions. We find that in the long run, information aggregation fails, and the fraction of private information transmitted goes to zero as the number of agents gets large. With Normal signals, in the long-run, agents learn less from observing the actions of any number of other agents than they learn from seeing three other agents’ signals. We identify rational groupthink—in which agents ignore their private signals and choose the same action for long periods of time—as the cause of this failure of information aggregation.

1. Introduction

In many economic situations, the costs and benefits of possible choices are initially unknown, but can be learned over time. Frequently, agents learn not only from their own experiences, but also from observing the choices made by others facing the same decision. For example, a monopolistic seller in a local market learns about the optimal price both by observing her own demand, as well as by observing the prices other sellers charge in similar markets. Likewise, observing who one’s social network friends support might influence who one believes to be the better candidate in an election. In many such situations, information arrives over time, and all agents eventually learn. Two important questions arise: How quickly do they learn? And how much do they learn from observing the actions of others?

To answer these questions we study a group of long-lived myopic agents who learn about a common state from private signals, as well as from the actions of the others. Every period, each agent observes a private signal, takes an action to maximize her expected utility, and observes others’ actions. Thus, in contrast to the herding literature where agents act once,
we allow for repeated interaction. Externalities are purely informational, i.e., each agent’s utility is independent of the others’ actions, and hence agents care about others’ actions only because they may provide information. As private signals are independent of actions, agents have no experimentation motive. Since each agent would learn the state from her private signals in the long-run, the question is not whether or not she learns the state eventually, but rather how quickly she does so. For tractability, we quantify the speed of learning as the asymptotic, exponential rate at which the probability of choosing the wrong action decays to zero.

What inference an agent draws from the actions of another agent depends on her belief about the other agents’ beliefs. Thus, agents’ actions may depend on their higher order beliefs. This poses a significant challenge for the exact characterization of behavior. We circumvent this problem by focusing on long-term, asymptotic probabilities, and by analyzing a smaller class of events we call “groupthink”. We loosely define groupthink to be the event that all agents take the wrong action for many periods. Through a recursive argument we are able to estimate the asymptotic probability of groupthink. This estimate implies that groupthink causes large inefficiencies and the loss of almost all information.

We prove that groupthink occurs after a consensus on an action is formed in the initial periods, making it optimal for every agent to continue taking the consensus action, even when her private information indicates otherwise. Our results show that typically, after a wrong consensus forms, all agents quickly observe private signals which provide strong evidence for choosing the correct action, and yet a long time may pass until any of them breaks the wrong consensus (Proposition 1). This leads to long periods of little information aggregation and a slow speed of learning.¹

With more agents, each individual agent is less likely to break a wrong consensus. On the other hand, the number of potential dissenters is larger, and so a priori it is not obvious whether groupthink becomes more or less likely. We show that the inefficiency (measured as the share of information that is lost) associated with the groupthink effect becomes arbitrarily large as the size of the group increases. Our first main result shows that, even as the number of agents goes to infinity, the speed of learning from actions stays bounded by a constant (Theorem 1), whereas the speed of learning from the aggregated signals, which is proportional to the number of agents, goes to infinity (Fact 2). Thus, in a large group, almost all information is lost; the agents’ belief when observing only actions has the same precision as would result from observing a vanishingly small fraction of the available private signals. Specifically, for Normal signals, a group of n agents observing each others’ actions

¹Our prediction seems to be in line with the findings in the empirical literature: Da and Huang (2016, page 5) find in a study on forecasters “that private information may be discarded when a user place weights on the prior forecasts [of others]. In particular, errors in earlier forecasts are more likely to persist and appear in the final consensus forecast, making it less efficient.”
learns asymptotically slower than a group of 4 agents who share their private signals; this holds for any n. Hence, at most a fraction of $\frac{4}{n}$ of the private information is transmitted through actions (Corollary 1). We proceed beyond Normal signals to show that for any signal distribution at most a fraction of $\frac{c}{n}$ of the private information is transmitted through actions, for some constant c that depends only on the distribution of the private signals (Proposition 2).

Using asymptotic rates to quantify the speed of learning has the disadvantage that these rates do not formally convey any information about the agents’ choices in the initial time periods. As a robustness test, we study a canonical setting of a large group of agents with Normal private signals, where, as the size of the group is increased, the total precision of their signals is kept constant. Our second main result shows that in this setting, our asymptotic finding—that for large groups almost no information is aggregated through actions as a consequence of groupthink—holds starting already from the second period. We show that in every period the probability with which an agent chooses the correct action when she observes others converges to the probability with which she would choose the correct action if she could only observe the actions taken by others in the first period (Theorem 2). Thus, in this context, information fails to aggregate not only asymptotically, but already after the second period.

An important advantage of asymptotic rates is that they are tractable. Beyond this, we show that asymptotic rates have the advantage of being independent of many details of the model, providing a measure that is robust to changes in model parameters such as the agents’ prior or the exact utility function. For similar reasons of tractability and robustness, many previous works have studied asymptotic (long run) rates of learning in various settings. Gale and Kariv (2003) use numerical methods to approximate these asymptotic rates, and emphasize the importance of the question.

Our work is closely related to models of rational herding (Bikhchandani et al., 1992; Banerjee, 1992; Smith and Sørensen, 2000; Chamley, 2004; Vives, 1993), as we use the same conditional i.i.d. structure of signals, and utilities depend only on one’s own actions and the state. The main difference is that in most herding models each agent acts only once, whereas in our model agents take actions repeatedly. An implication of this interaction is a feedback effect where an agent’s action today influences other agents’ future actions, which

2Examples of papers studying the rate of learning are Vives (1993); Chamley (2004); Duffie and Manso (2007); Duffie et al. (2009, 2010). Asymptotic rates also have been studied in other settings in which it is difficult to analyze the short-term dynamics (e.g., Hong and Shum, 2004; Hörner and Takahashi, 2016). Jadbabaie et al. (2013) and Molavi et al. (2015) study the rate of learning in an almost identical setting, with boundedly rational agents.

3Gale and Kariv (2003, p.20): “Speeds of convergence can be established analytically in simple cases. For more complex cases, we have been forced to use numerical methods. The computational difficulty of solving the model is massive even in the case of three persons [...] This is an important subject for future research.”
in turn change her own future actions. This entails an additional dimension relative to the herding literature: the complexity and importance of higher order beliefs. Agents’ actions may depend on beliefs of arbitrarily high order, since, unlike in the herding literature, it is not sufficient to reason about others’ beliefs, but one must also reason about their beliefs regarding one’s own beliefs and so on. A methodological contribution of this paper is to provide an analysis of this interaction, circumventing the calculation of beliefs, which in such contexts is well known to be intractable and predicts counter-intuitive behavior such as anti-imitation (e.g., Eyster and Rabin, 2014; Acemoglu et al., 2011; Callander and Hörner, 2009). More importantly, we show that the failure of information aggregation is not particular to sequential models in which agents act only once, but more generally extends to situations of repeated interactions.

Potential applications of our results appear in settings in which agents repeatedly learn from each other. These include the dissemination of information in developing countries (e.g., Conley and Udry (2010); Banerjee et al. (2013) among many studies), the adoption of opinions on social networks, and prediction markets where forecasters observe the forecasts of others (see Da and Huang (2016)).

2. Setup

Time is discrete and indexed by $t \in \{1, 2, \ldots \}$. Each period, each agent $i \in \{1, 2, \ldots, n\}$ first observes a signal (or shock) $s_i^t \in \mathbb{R}$, takes an action $a_i^t \in A$, and finally observes the actions taken by others this period. The set of possible actions is finite: $|A| < \infty$.

2.1. States and Signals. There is an unknown state

$$\Theta \in \{l, h\}$$

randomly chosen by nature, with probability $p_h = \mathbb{P} [\Theta = h] \in (0, 1)$. Signals s_i^0, s_i^1, \ldots are i.i.d, across agents and over time, conditional on the state Θ, with distribution μ_Θ. The distributions μ_h and μ_l are mutually absolutely continuous4 and hence no signal perfectly reveals the state. As a consequence the log-likelihood ratio of every signal

$$\ell_i^t = \log \frac{d\mu_h}{d\mu_l}(s_i^t)$$

is well defined (i.e., $|\ell_i^t| < \infty$) and we assume that it has finite expectation $|\mathbb{E} [\ell_i^t]| < \infty$. We also assume that priors are generic5, so as to avoid the expository overhead of treating cases in which the agents are indifferent between actions; the results all hold even without this assumption.

4That is, every event with positive probability under one measure has positive probability under the other.

5That is, chosen from a Lebesgue measure one subset of $[0, 1]$.

Our signal structure allows for bounded as well as unbounded likelihoods. Our main example is that of Normal signals $s_i^t \sim N(m_{\theta}, \sigma^2)$ with mean m_{θ} depending on the state and variance σ^2. Another example is that of binary signals $s_i^t \in \{l, h\}$ which are equal to the state with constant probability $P[s_i^t = \Theta | \Theta] = \phi > 1/2$.

2.2. Actions and Payoffs. Agent i’s payoff (or utility) in period t depends on her action a_i^t and next period’s signal s_{i+1}^t, and is given by $u(s_{i+1}^t, a_i^t)$. The signal can be interpreted as a shock (like demand or interest rate) which influences the payoffs of the different actions of the agent. Note that $u(\cdot, \cdot)$ does not depend on the agent’s identity i or the time period t. This model is equivalent to a model where the agent’s utility $\bar{u}(\Theta, a_i^t)$ is unobserved and depends directly on the state. Formally, we can translate the model where the utility depends on the signal into the model where it depends on the state by setting it equal to the expected payoff conditional on the state θ:

$$\bar{u}(h, \alpha) := E_h[u(s_{i+1}^t, \alpha)]$$
$$\bar{u}(l, \alpha) := E_l[u(s_{i+1}^t, \alpha)].$$

We denote by a^θ the action that maximizes the flow payoff in state θ, which we assume is unique

$$a^\theta := \arg \max_{\alpha \in A} \bar{u}(\theta, \alpha).$$

We call a^h, a^l the certainty actions and assume that they are distinct (i.e., $a^h \neq a^l$), as otherwise the problem is trivial.

2.3. Agents’ Behavior. We assume throughout that agents are Bayesian and myopic: they completely discount future payoffs, and thus at every time period choose the action the maximizes the payoff at that period. In this repeated action setting there may be a strategic incentive to change ones own action in order to gain more information from future actions of others. This effect does not exist for rational myopic agents, who do not value future information, and we make this assumption for tractability.

6In the herding literature agents either learn or do not learn the state, depending on whether private signals have bounded likelihood ratios (Smith and Sørensen, 2000). In our model, the distinction between unbounded and bounded private signals is not important, since the aggregate of each agent’s private information suffices to learn the state.

7Note, that observing the utility $u(s_{i+1}^t, a_i^t)$ does not provide any information beyond the signal s_{i+1}^t and therefore past signals $(s_i^1, ..., s_i^t)$ are a sufficient statistic for the private information available to agent i when taking an action in period $t + 1$.

8Throughout, we denote by $E_\theta[\cdot] := E[\cdot | \Theta = \theta]$ and $P_\theta[\cdot] := P[\cdot | \Theta = \theta]$ the expectation and probability conditional on the state.

9The same choice is made in most of the learning literature (where signals are private and agents interact repeatedly) either explicitly (e.g., Sebenius and Geanakoplos, 1983; Parikh and Krasucki, 1990; Bala and Goyal, 1998; Keppo et al., 2008), or implicitly, by assuming that there is a continuum of agents (e.g., Vives, 1993; Gale and Kariv, 2003; Duffie and Manso, 2007; Duffie et al., 2009, 2010).
approach is that reasoning about the informational effect of one’s actions in such setups requires a level of sophistication that seems unrealistic in many applications.\footnote{We conjecture that all our results generalize to the case of non-myopic agents, but this extension requires substantial technical innovation, beyond the techniques developed in this paper.}

We denote by p_i^t the posterior probability that agent i assigns to the event $\Theta = h$ at the beginning of period t. As an agent’s posterior belief p_i^t is a sufficient statistic for her expected payoff, her action a_i^t depends only on p_i^t. Formally, there exists a function $a^* : [0, 1] \to A$ such that with probability one\footnote{We here say “with probability one” only to rule out the zero probability event that the agent is indifferent.}

$$a_i^t = a^*(p_i^t).$$

It is important to note that our model is not one of strategic experimentation, where there are incentives to change one’s action in order to learn more from one’s own future signals, or from others’ future actions. We exclude these strategic incentives by assuming both that information arrives independently of actions, and that agents are myopic.

2.4. Information. Each agent observes only her own signals, and not the signals of others. To learn about the state, agents try to infer the signals of others from their actions. More precisely, at the end of each period an agent observes the actions taken by all other agents in this period.

2.5. Examples.

2.5.1. Matching the State. A simple example which suffices to understand all the economic results of the paper is the case of two actions $A = \{l, h\}$ where the agent’s expected utility equals one if she matches the state, i.e.

$$\bar{u}(\theta, \alpha) = \begin{cases}
1 & \text{if } \alpha = \theta \\
0 & \text{if } \alpha \neq \theta
\end{cases}.$$

In this case the agent simply takes the action to which her posterior belief assigns higher probability:

$$a_i^t = \begin{cases} h & \text{if } p_i^t > \frac{1}{2} \\
l & \text{otherwise}
\end{cases}.$$

2.5.2. Monopolistic Sellers. As an application, consider local monopolistic sellers who want to learn about the demand for their product and the associated optimal price. Each seller acts in a different market, so that there are no payoff externalities. The distribution of demand, however, is the same, so that the realized demand in other markets is informative about future demands in a seller’s home market.
For concreteness, assume that the sellers are shop owners who are selling a new product, and that in the high state the number of people entering the store to inquire about the product is Poisson with mean ρ_h, while in the low state it is Poisson with mean ρ_l, which is less than ρ_h. After learning the price each customer decides whether or not to buy, depending on her private valuation. Customers’ private valuations for the product are independent of the state, and so, after having entered the store, customers reveal no new information about the state. Thus, the information a seller learns about the state from her own customers is independent of the price she sets.

When marginal profits are not constant in the volume of sales, a seller will want to set one price if the state is high, another price if the state is low, and potentially intermediate prices when she is unsure about the state. Consequently, each seller wants to learn the state and does so not only by observing the demand in her store, but also by observing the prices set by other sellers.

3. Results

In this section we describe our results on the speed of learning; section 4 derives the learning dynamics in detail and explains how they lead to the results of this section. More specifically, in this section we consider the probability with which an agent i takes a suboptimal action in period t:

$$a_i^t \neq \alpha^\Theta.$$

As the action is suboptimal (given knowledge of the state) we refer to this event as agent i “making a mistake” by “choosing the wrong action”, even though she takes the action which is optimal given her information. As a benchmark we first briefly discuss the classical single agent case.

3.1. Autarky. In the single agent case $n = 1$, the probability of a suboptimal action is well known to decay exponentially, with a rate r_a that can be calculated explicitly in terms of the cumulant generating functions $\lambda_h = -\log \mathbb{E}_h [e^{-z\ell}]$ and $\lambda_l(z) := -\log \mathbb{E}_l [e^{z\ell}]$.

Fact 1 (Speed of learning in autarky). The probability that a single agent in autarky chooses the wrong action in period t satisfies\(^{13}\)

$$
\mathbb{P}[a_t \neq \alpha^\Theta] = e^{-r_a t + o(t)},
$$

\(^{12}\)Here ℓ is a random variable with a distribution that is equal to that of any of the log-likelihood ratios ℓ_i^t. The definition of the cumulant generating function differs by a sign from the usual one.

\(^{13}\)Here, and elsewhere, we write $o(t)$ to mean a lower order term. Formally a function $f : \mathbb{R} \to \mathbb{R}$ is in $o(t)$ if $\lim_{t \to \infty} f(t)/t = 0$.

7
where

\[r_a := \sup_{z \geq 0} \lambda_h(z) = \sup_{z \geq 0} \lambda_l(z). \]

This type of autarky result is classical and can be found, for example, in studies of Bayesian hypothesis testing (see, e.g. Cover and Thomas (2012, pages 314-316)). For us it serves as a benchmark for the case when agents try to learn from the actions of others. We prove Fact 1 in the Appendix, for the convenience of the reader.

Note, that the long-run probability of a mistake is independent of set of actions \(A \) and the utility function \(u \). It is also independent of the prior. Thus quantifying the speed of learning using the exponential rate has both advantages and disadvantages: the rate is independent of many details of the model and depends only on the private signal distributions. It is also tractable and can be explicitly calculated for many distributions. However, it is an asymptotic measure and in general does not say anything formally about what happens in early periods. Of course, the same is true for many statistical results, like the Central Limit Theorem, which nevertheless provide helpful intuition about what happens in finite periods.

3.2. Many agents. We now turn to the case where there are \(n \geq 2 \) agents. We first consider the benchmark case where all signals are observed by all agents. Since there is no private information, all agents hold the same beliefs, and this case reduces to the single agent case, but where \(n \) signals are observed in every period. After \(t \) periods the agents will have observed \(n \cdot t \) signals, and so, by Fact 1, their probability of taking the wrong action will be the probability of error after \(n \cdot t \) periods in the autarky setting.

Fact 2 (Speed of learning with public signals). *When signals are public, the probability that any agent \(i \) chooses the wrong action in period \(t \) satisfies*

\[
\mathbb{P} \left[a_t^i \neq \alpha^\Theta \right] = e^{-n r_a t + o(t)}.
\]

Having considered this benchmark case, we turn to our main model, in which \(n \geq 2 \) agents observe each others’ actions, but signals are private. Our main result is that for any number of agents the speed of learning is bounded from above by a constant:

Theorem 1. *Suppose \(n \) agents all observe each others’ past actions. Given the private signal distributions, there exists a constant \(\bar{r}_b > 0 \) such that for any number of agents*

\[
\mathbb{P} \left[a_t^i \neq \alpha^\Theta \right] \geq e^{-\bar{r}_b t + o(t)}.
\]

In particular, this holds for \(\bar{r}_b = \min \{ \mathbb{E}_h [\ell], -\mathbb{E}_l [\ell] \} \). When private signals are Normal then one can take \(\bar{r}_b = 4r_a \).

An immediate corollary from Theorem 1 and Fact 2 is the following result.
Corollary 1. There exists a fixed group size k such that for any arbitrarily large group size n, the probability that any agent chooses the wrong action is eventually lower with k agents and public signals than with n agents and private signals. When signals are Normal we can take $k = 4$.

Thus adding more agents (and with them more private signals and more information) cannot boost the speed of learning past some bound, and as n tends to infinity more and more of the information is lost. In the case of normal signals $\bar{r}_b = 4r_a$, and thus, regardless of the number of agents, the probability of mistake is eventually higher than it would be if 4 agents shared their private signals. Thus for large groups almost all of the private signals are effectively lost, i.e. not aggregated in the decisions of others.

3.2.1. Groupthink. To prove this theorem we calculate the asymptotic probability of the event that all agents choose the wrong certainty action in almost all time periods up to time t. We call this event “groupthink” and show that its probability is already high, which implies that the probability that one particular agent errs at time t is also high. Intuitively, when a wrong consensus forms by chance in the beginning, it is hard to break and can last for a long time, with surprisingly high probability. This is due to the fact that agents require their private signals to be relatively strong in order to choose a dissenting action.

In fact, conditioned on groupthink, it holds, with high probability, that the private signals of each agent, which initially indicated the wrong action, eventually strongly indicate the correct action, but are still ignored due to the overwhelming information provided by the actions of others. We thus find the term groupthink an apt description of the phenomenon. We formally express this in the following proposition.

Proposition 1. In the long run, conditional on the state being high and all agents taking the incorrect low action in every period, the private signals of every agent indicate the correct high action. That is, for every agent i and $\varepsilon > 0$ it holds that

$$\lim_{t \to \infty} \mathbb{P}_h \left[\mathbb{P} \left[\Theta = h \mid s^i_1, \ldots, s^i_t \right] > 1 - \varepsilon \mid a^j_s = a^j_t \text{ for all } s \leq t \text{ and all } j \right] = 1.$$

The analogous statement holds in the low state.

This phenomenon, which does not seem to have an analogue in sequential herding models, seems striking, as it does not involve irrationality, and yet results in a group taking an action which contradicts each and every member’s private information.

3.2.2. Early Period Mistake Probabilities. Theorem 1 is a statement about asymptotic rates. In fact, if one were to increase the number of agents while holding the private signal distributions fixed, the probability of the agents choosing correctly at any given period $t > 1$ approaches 1. Thus, a more interesting setting is one in which, as we increase the number
of agents, we decrease the informativeness of each agent’s signal, while keeping fixed the amount of information available to all agents together.

We consider \(n\) agents who each receive Normal private signals with fixed conditional means \(\pm 1\) and variance \(n\). If such signals were publicly observable they would be informationally equivalent to a single Normal signal with variance 1 each period. In this setting, Theorem 1 implies that the speed of learning would be inversely proportional to the size of society, and in particular would tend to zero as \(n\) tends to infinity.

To test the robustness of this asymptotic speed of learning result, we perform a detailed analysis of the early periods, showing that, as the number of agents increases, they learn less and less from each other’s actions. Thus, the asymptotic result of Theorem 1, which stated that the agents learn little from each other’s actions in the long run, “kicks in” early on (in fact, already in the second period), in the sense that with high probability the agents learn nothing from each other’s actions after the first period.

Theorem 2. Suppose \(n\) agents have normal private signals with conditional distributions \(\mathcal{N}(\pm 1, n)\) and want to match the state\(^{14}\), so that \(\bar{u}(\theta, a) = 1_{\{a = \theta\}}\). Then, for every \(t\), the probability that all agents in the periods \(\{2, 3, \ldots, t\}\) choose the action that the majority of the agents chose in period 1 converges to one as \(n\) goes to infinity.

Thus the private signals of periods \(\{2, \ldots, t\}\) are with high probability not strong enough to induce a deviation from the first period consensus in these periods. Consequently, the actions in these periods are correct only if the action taken by the majority in the first period is correct. This probability is bounded by \(\Phi(1) \sim 0.84\) for any \(n\). Of course, this probability can be arbitrarily close to 1/2 if the private signal distributions have a larger variance. In this case, almost all information is lost even in early periods, if the number of agents is sufficiently high.

The intuition behind this result is the following: after observing the first round actions, the probability that a particular agent will have a strong enough signal to deviate from the majority opinion (action) is small. In fact, it is so small that the probability that no agent deviates is almost one, and moreover it takes many periods until any agent has a strong enough signal to deviate. When agents observe that no one has deviated, it further strengthens (if not by much) their belief in the majority opinion, thus again delaying the breaking of the consensus. Of course, when the initial consensus is wrong, eventually it is broken.

\(^{14}\)See Section 2.5.1.
4. LEARNING DYNAMICS

In this section we analyze the learning dynamics in detail and explain how we prove the results of Section 3. We discuss how agents interpret each other’s actions and how they choose their own. The analysis of these learning dynamics is related to questions in random walks and large deviations theory. Proving our results requires some mathematical innovation, which we view as a contribution of this paper.

4.1. Preliminaries. As an agent’s expected utility for a given action is linear in her posterior belief p_i^t, the set of beliefs where she takes a given action is an interval. It will be convenient to define the agent’s log-likelihood ratio (LLR) $L_i^t := \log p_i^t / (1 - p_i^t)$. As the LLR is a monotone transformation of the agent’s posterior belief, and as a myopic agent’s action is determined by her posterior, the same holds true in terms of LLRs. This can be summarized in the following lemma.

Lemma 1. There exist disjoint intervals $(L^t(\alpha), L^t(\alpha)) \subset \mathbb{R} \cup \{-\infty, +\infty\}$, one for each action $\alpha \in A$, such that, with probability one, $a_i^t = \alpha$ if and only if $L_i^t \in (L^t(\alpha), L^t(\alpha))$.

To characterize the agent’s actions it thus suffices to characterize her LLR. Note, that for the certainty action α^l it holds that $L^t(\alpha^l) = -\infty$, and that analogously $L^t(\alpha^h) = +\infty$.

4.2. Autarky. As a benchmark, we first describe the classical autarky setting where a single agent acts by himself. In this section we omit the superscript signifying the agent.

Evolution of Beliefs. In autarky, the posterior probability the agent assigns to the high state before taking an action in period t is $P_t = \mathbb{P}[\theta = h \mid s_1, \ldots, s_t]$. Applying Bayes’ rule yields that the LLR L_t follows a random walk with increments $\ell_t = \log \frac{d\mu_h}{d\mu}(s_t)$ equal to the LLR of the signals the agent observed:

\[
L_t = L_0 + \sum_{\tau=1}^{t} \ell_{\tau}.
\]

Probability of Mistakes. As a consequence of Lemma 1, the probability that the agent chooses the wrong action in period t when the state equals θ is given by

\[
\mathbb{P}_{\theta}[a_t \neq \alpha^\theta] = \begin{cases}
\mathbb{P}_h[L_t \leq L^t(\alpha^h)] & \text{if } \theta = h \\
\mathbb{P}_t[L_t \geq L^t(\alpha^l)] & \text{if } \theta = l.
\end{cases}
\]

Hence, to calculate the probability of a mistake one needs to calculate the probability that the LLR is in a given interval. By (2) the LLR is the sum of increments which are i.i.d. conditional on the state, and hence $(L_t)_t$ is a random walk.
The short-run probability that a random walk is within a given interval is hard to calculate and depends very finely on the distribution of its increments.\(^{15}\) As this makes it impossible—even in the single agent case—to obtain any general results on the probability that the agent makes a mistake, we focus on the long-run probability of mistakes, which can be analyzed for general signal structures. The long-run behavior of random walks has been studied in large deviations theory, with one of the earliest results due to Cramér (1944), who studied these questions in the context of calculating premiums for insurers. We will use some of the ideas and tools from this theory in our analysis; a self-contained introduction is given in Appendix A for the convenience of the reader.

Beliefs. We define the private LLR \(R_t \) as the LLR calculated based only on an agent’s private signals:

\[
R_t := L_0 + \sum_{\tau=1}^{t} \ell_{\tau}.
\]

In the single agent case the private signals are all the available information, so \(L_t = R_t \), but this will no longer be the case once we consider more agents. Regardless of the number of agents and the information available to them, the private LLR is a random walk with steps \(\ell_t \), if we condition on the state. We can therefore use large deviation theory to estimate the probability that the private LLR \(R_t \) deviates from its expectation, conditional on the state. To this end, let \(\ell \) have the same distribution as each \(\ell_t \), define \(\lambda_\theta : \mathbb{R} \to \mathbb{R} \), the cumulant generating function of the increments of the LLR in state \(\theta \) by

\[
\lambda_h(z) := -\log \mathbb{E}_h \left[e^{-z \ell} \right] \quad \lambda_l(z) := -\log \mathbb{E}_l \left[e^{z \ell} \right],
\]

and denote its Fenchel conjugate by

\[
\lambda_\theta^*(\eta) := \sup_{z \geq 0} \lambda_\theta(z) - \eta \cdot z.
\]

Given these definition, we are ready to state the basic classical large deviations estimate that we use in this paper.

Lemma 2. For any \(\mathbb{E}_l [\ell] < \eta < \mathbb{E}_h [\ell] \) it holds that\(^{16}\)

\[
\mathbb{P}_h \left[R_t \leq \eta \cdot t + o(t) \right] = e^{-\lambda_h^* (\eta) \cdot t + o(t)}
\]

\[
\mathbb{P}_l \left[R_t \geq \eta \cdot t + o(t) \right] = e^{-\lambda_l^* (-\eta) \cdot t + o(t)}.
\]

\(^{15}\)The only exception are a few cases where the distribution of the LLR \(L_t \) is known in closed form for every \(t \), such as the Normal case. Even in the Normal case it seems to us intractable to calculate in closed form the mistake probability in early periods in the multi-agent case.

\(^{16}\)Here each \(o(t) \) denotes a different function, so that the first line can be alternatively written as follows: For every \(f(\cdot) \) with \(\lim_{t \to \infty} f(t)/t = 0 \) there exists a \(g(\cdot) \) with \(\lim_{t \to \infty} g(t)/t = 0 \) such that \(\mathbb{P}_h \left[R_t \leq \eta \cdot t + f(t) \right] = e^{-\lambda_h^*(\eta) \cdot t + g(t)} \).
This Lemma states that the probability that the random walk R_t deviates from its (conditional) expectation is exponentially small, and decays with a rate that can be calculated exactly in terms of λ^*_h or λ^*_l. The proof of Lemma 2 in the Appendix uses the properties of λ_θ and λ^*_θ to verify that the increments of the LLR process in both states are such that large deviation theory results are applicable. Lemma 2 allows us to calculate the probability of a mistake conditional on each state, immediately implying Fact 1, which states that

$$\Pr[a_t \neq \alpha^\Theta] = e^{-r_a \cdot t + o(t)},$$

where $r_a = \lambda^*_h(0) = \lambda^*_l(0)$.

4.3. Many Agents and the Groupthink Effect. In this section we consider $n \geq 2$ agents. Each agent observes a sequence of private signals s^1_i, \ldots, s^t_i, and the action taken by other agents in previous periods $(a^j_\tau)_{\tau < t, j \neq i}$. In this setting we prove Theorem 1. As before, we consider myopic agents who completely discount future payoffs, and thus at each period choose the action that maximizes their expected payoffs at that period. For example, in the “matching the state” setting (Section 2.5.1), the agents’ actions will be given by

$$a^i_t = \begin{cases} h & \text{if } \Pr[\Theta = h \mid (s^i_\tau)_{\tau \leq t}, (a^j_\tau)_{\tau < t, j \neq i}] > \frac{1}{2} \\ l & \text{otherwise} \end{cases}.$$

The Probability that All Agents Make a Mistake in Every Period. To bound the probability of mistake, we consider the event G_t that all agents choose the action α^l in all time periods up to t:

$$G_t = \cap_{i=1}^n \cap_{\tau=1}^t \{a^i_\tau = \alpha^l\}.$$

To simplify the exposition we assume in the main text that G_t has strictly positive probability.\footnote{We note that it is possible to strengthen this result by replacing the lower order $o(t)$ term by $O(\log(t))$ using the Bahadur-Rao exact asymptotics method (see Dembo and Zeitouni (1998, Pages 110-113) for a detailed derivation). However, such precision will provide little additional economic insight while significantly complicating the proofs, and thus we will not pursue it.} Conditioned on $\Theta = h$, the event G_t is the event that all the agents are, and always have been, in unanimous agreement on the wrong action α^l. We thus call G_t the groupthink event. The event G_t implies that all agents made a mistake in period t, conditioned on $\Theta = h$. Thus calculating the probability of G_t will provide a lower bound on the probability that a particular agent makes a mistake.

\footnote{This is the case, for example, if the prior is not too extreme relative to the maximal possible private signal strength, or if the private signals are unbounded. Otherwise, it may be the case that agents never take the wrong certainty action in some initial periods, for example if the prior is extreme and the private signals are weak. In Appendix C we drop this assumption, slightly change the definition of G_t, and formally show that all our results also hold in general.}
This event can be written as $G^1_t \cap \cdots \cap G^n_t$, where G^i_t is the event that agent i chooses the wrong action α^l in every period $\tau \leq t$. To calculate the probability of G_t, it would of course have been convenient if these n events were independent, conditioned on Θ. However, due to the fact that the agents’ actions are strongly intertwined, these events are not independent; given that agent 1 played the action α^l—which is optimal in the low state—in all previous time periods, agent 2 assigns a higher probability to the low state and is more likely to also play the same action. This poses a difficulty for the analysis of this model, which is a direct consequence of the fact that the agents’ actions are intricately dependent on their higher order beliefs.

Decomposition in Independent Events. Perhaps surprisingly, it turns out that G_t can nevertheless be written as the intersection of conditionally independent events. We now describe how this can be done.

Lemma 3. There exists a sequence of thresholds $(q^i_\tau)_\tau$ such that the event G_t equals the event that no agent’s private LLR R^i_τ hits the threshold q before period t

$$G_t = \bigcap_{i=1}^n \{ R^i_\tau \leq q_\tau \text{ for all } \tau \leq t \}.$$

The proof of Lemma 3 in Appendix C shows this result recursively. Intuitively, whenever G_{t-1} occurs, all agents took the action α^l up to time $t - 1$. By the induction hypothesis this implies that the private LLR of all other agents was below the threshold q_τ in all previous periods. As conditional on the states the private LLR’s of different agents are independent, whether agent i takes the action α^l at time t conditional on G_{t-1}, depends only on her private LLR R^i_τ. As α^l is the most extreme action it follows that the set of private LLRs where the agent takes the action α^l must be a half-infinite interval and is thus characterized by a threshold q_τ. By symmetry, this is the same threshold for all agents.

Calculating the Thresholds. We now provide a sketch of the argument (omitting many technical details) which we use in the appendix to characterize the threshold q_t. The threshold q_t admits a simple interpretation: it determines how high a private LLR R^i_t an agent must have in order to break from the consensus, and not take action α^l at time t, after having seen everyone take it so far. To calculate the q_t’s we consider agent j’s decision problem at time $t + 1$, conditioned on G_t. The information available to her is her own private signals (summarized in her private log-likelihood ratio R^j_{t+1}), and in addition the fact that all other agents have chosen α^l up to this point. But the latter observation is equivalent to knowing that all the other agent’s private log-likelihood ratios have been under the thresholds q_τ in all previous time periods. Formally, knowing G_t is equivalent to knowing that

$$W^i_t := \{ R^i_\tau \leq q_\tau \text{ for all } \tau \leq t \}$$
has occurred for all agents \(i \neq j\).

How does knowing that agent \(i\)'s private LLR has been below \(q_t\) in all previous periods (i.e. \(W_i^t\) occurred) influence agent \(j\)'s posterior? To answer this question we consider the log-likelihood ratio induced by this event:

\[
\log \frac{\mathbb{P}_h[W_i^t]}{\mathbb{P}_l[W_i^t]}.
\]

We show in Proposition 5 in the appendix that the logarithm of the probability of the event \(W_i^t\) conditioned on \(\Theta = h\) is asymptotically the same as that of the event \(R_i^t \leq q_t\), i.e., the event that agent \(i\)'s private LLR is below the threshold \(q_t\) at just the last period:

\[
\log \mathbb{P}_h[W_i^t] \approx \log \mathbb{P}_h[R_i^t \leq q_t].
\]

Proposition 5 is similar in spirit to the Ballot Theorem of Bertrand (1887), which implies that the probability that a random walk is below a constant threshold in all prior periods approximately equals (up to sub-exponential terms) the probability that the random walk is below this threshold in the last period. We generalize this result in Proposition 5 by showing that the probability that a random walk is below a non-constant threshold \((q_t)_t\) in all prior periods asymptotically equals the probability that the random walk is below the linear threshold \(q \cdot t\) with slope \(q = \liminf_t q_t/t\) equal to the infimum of the slopes of the original threshold. This proposition is not an established large deviations result, but rather a contribution of this paper.

In Proposition 7 in the appendix we show that \(q_t\) is in fact asymptotically linear, i.e. the limit \(q = \lim_{t \to \infty} q_t/t\) exists. This implies that \(\log \mathbb{P}_h[W_i^t] = \log \mathbb{P}_h[R_i^t \leq q_t] + o(t)\). Thus, the large deviations estimate given in Lemma 2 implies that

\[
\log \mathbb{P}_h[W_i^t] = \log \mathbb{P}_h[R_i^t \leq q_t] + o(t) = \log \mathbb{P}_h[R_i^t \leq q \cdot t] + o(t) = -\lambda^*_h(q) \cdot t + o(t).
\]

In Lemma 7 in the Appendix we show that conditional on \(\Theta = l\), the probability of the event \(W_i^t\) that agent \(i\) takes the correct action \(\alpha^l\) in every period is strictly positive, i.e. there exists a constant \(C > 0\) such that \(\mathbb{P}_l[W_i^t] \in [C, 1]\) for all \(t\). Thus, the LLR induced by the event \(W_i^t\) is

\[
\log \frac{\mathbb{P}_h[W_i^t]}{\mathbb{P}_l[W_i^t]} = \log \mathbb{P}_h[W_i^t] - \log \mathbb{P}_l[W_i^t] = -\lambda^*_h(q) \cdot t + o(t).
\]

Since the event \(G_t\) that the private LLR of every agent is below \(q_*\) in every period prior to \(t\) is the intersection of the individual events \(G_t = \bigcap_{i=1}^n W_i^t\), and since these events \((W_i^t)_i\) are conditionally independent, we get that the log-likelihood ratio of \(G_t\) is simply a multiple of the LLR of \(W_i^t\):

\[
\log \frac{\mathbb{P}_h[G_t]}{\mathbb{P}_l[G_t]} = -(n - 1) \cdot \lambda^*_h(q) \cdot t + o(t).
\]
The factor here is \(n - 1 \) rather than \(n \), since each agent observes only \(n - 1 \) others. Thus, after observing \(G_t \), agent \(j \)'s posterior log-likelihood ratio will be the sum of her private LLR \(R^j_t \) and the LLR induced by observing \(G_t \)

\[
L^j_t = R^j_t - (n - 1) \cdot \lambda^*_h(q) \cdot t + o(t).
\]

By Lemma 1, agent \(j \) will therefore take the action \(\alpha^j \) in period \(t + 1 \) if her signal is below \((n - 1) \cdot \lambda^*_h(q) \cdot t + o(t) \), which determines the new threshold \(q_{t+1} \).

Thus, the threshold for the groupthink event at time \(t + 1 \) will be

\[
q_{t+1} = (n - 1) \cdot \lambda^*_h(q) \cdot t + o(t).
\]

Dividing by \(t \) and taking the limit as \(t \) tends to infinity yields that (Proposition 7)

\[
q = (n - 1) \cdot \lambda^*_h(q).
\]

Note that \(q \) depends only on the private signal distributions, through \(\lambda^*_h \). Since \(\lambda^*_h \) is non-negative and decreasing, this equation will always have a unique solution. We have thus calculated \(q \): it is the solution of the fixed point equation (6).

Intuitively, if the threshold is too high then it is likely that the others’ private LLRs are below it, and so it is likely that they do not break the consensus. Thus an agent gains little information from observing them agreeing with the consensus, and her threshold for breaking the consensus will be low. This contradicts the initial assumption that the threshold is high. Likewise, if the threshold is too low, then an agent learns a lot by observing the consensus endure, and thus sets a high threshold for breaking it. The fixed point of (6) is the value in which these effects are equal.

Equation 6 determines the value of \(q \), the slope of the threshold above which the agents break the consensus. We can use (5) to determine the probability of the event \(W^i_t \) that agent \(i \) does not break the consensus. Using the facts that the groupthink event \(G_t \) satisfies \(G_t = \bigcap_{i=1}^n W^i_t \) and that the \(W^i_t \)'s are conditionally independent, we thus have that

\[
\mathbb{P}_h [G_t] = \mathbb{P}_h [W^i_t]^n = e^{-q \frac{n}{n-1} t} t^o t.
\]

Consequently, the rate \(r_g \) of the event \(G_t \) that all agents take the wrong action in all periods up to time \(t \) is

\[
r_g = \frac{n}{n-1} q.
\]

We note that this rate can often be calculated explicitly. For example, for Normal private signals a straightforward calculation shows that

\[
r_g = \frac{4 (n - \sqrt{n})^2}{(n - 1)^2} r_a.
\]

16
Finally, a convexity argument yields that this rate is bounded for any number of agents. We provide the proof in the appendix.

Proposition 2. For any number of agents \(n \) it holds that \(r_g < \mathbb{E}_h[\ell] \).

As the groupthink event implies that all agents make a mistake, this provides a bound on the speed of learning, conditioned on \(\Theta = h \):

\[
P_h \left[a^i_t \neq a^h \right] \geq P_h \left[G_t \right] = e^{-r_g \cdot t + o(t)}.
\]

Performing the corresponding calculation when conditioning on the low state, we have proved Theorem 1, for \(\bar{r}_b = \min \{ \mathbb{E}_h[\ell], -\mathbb{E}_l[\ell] \} \). In the case of Normal private signals, a tedious but straightforward calculation shows that \(\bar{r}_b = 4r_a \).

5. Conclusion

We show that groupthink, a form of herding, occurs in a complex environment of agents who observe each other and take actions repeatedly. As a result, almost all information is lost when the group of agents is large. We use asymptotic rates as a measure of the speed of learning. As a robustness test, we show that the same effect holds also in the early periods, for the case of Normal signals.

This article leaves many open questions which could potentially be analyzed using our approach. What happens when the state changes over time? What happens with payoff externalities, for example when agents have incentive to coordinate? Of particular interest is the study of a more complex societal structure of the agents: how fast do they learn for a given network of observation, which is not the complete network?

References

Zhi Da and Xing Huang. Harnessing the wisdom of crowds. 2016.

Appendix A. The cumulant Generating Functions, their Fenchel Conjugates, and Large Deviations Estimates

Large Deviations of Random Walks. The long-run behavior of random walks has been studied in large deviations theory. We now introduce some tools from this literature, which will be crucial to understanding the long-run behavior of agents.

Let X_1, X_2, \ldots be i.i.d random variables with $E[X_t] = \mu$ and $Y_t = \sum_{\tau=1}^{t} X_\tau$ the associated random walk with steps X_t. By the law of large numbers we know that Y_t should approximately equal $\mu \cdot t$. Large deviation theory characterizes the probability that Y_t is much lower, and in particular smaller than $\eta \cdot t$, for some $\eta < \mu$. Under some technical conditions, this probability is exponentially small, with a rate $\lambda^*(\eta)$:

$$P\left[Y_t < \eta \cdot t + o(t)\right] = e^{-\lambda^*(\eta) \cdot t + o(t)},$$

or equivalently stated

$$\lim_{t \to \infty} \frac{1}{t} \log P\left[Y_t < \eta \cdot t + o(t)\right] = \lambda^*(\eta).$$

The rate λ^* can be calculated explicitly and is the Fenchel Conjugate of the cumulant generating function of the increments

$$\lambda^*(\eta) := \sup_{z \geq 0} \left(-\log E[e^{-z X_1}] - \eta \cdot z \right).$$

The first proof of a “large deviation” result of this flavor is due to Cramér (1944), who studied these questions in the context of calculating premiums for insurers. A standard textbook on large deviations theory is Dembo and Zeitouni (1998).

In this section we provide an independent proof of this classical large deviations result, and prove a more specialized one suited to our needs. We consider a very general setting: we make no assumptions on the distribution of each step X_t, and in particular do not need to assume that it has an expectation.

Denoting $X = X_1$, The cumulant generating function λ is (up to sign, as compared to the usual definition) given by

$$\lambda(z) = -\log E\left[e^{-z X}\right].$$

Note that when the right hand side is not finite it can only equal $-\infty$ (and never $+\infty$).

Proposition 3. λ is finite on an interval I, on which it is concave and on whose interior it is smooth (that is, having continuous derivatives of all orders).
Proof of Proposition 3. Note that I contains 0, since $\lambda(0) = 0$ by definition. Assume $\lambda(a)$ and $\lambda(b)$ are both finite. Then for any $r \in (0, 1)$

$$\lambda(r \cdot a + (1 - r) \cdot b) = -\log E \left[e^{-(r \cdot a + (1 - r) \cdot b) \cdot X} \right] = -\log E \left[(e^{-a \cdot X})^r \cdot (e^{-b \cdot X})^{1-r} \right],$$

which by Hölder’s inequality is at least $r \cdot \lambda(a) + (1 - r) \cdot \lambda(b)$. Hence λ is finite and concave on a convex subset of \mathbb{R}, or an interval. We omit here the technical proof of smoothness; it can be found, for example, in Stroock (2013, Theorem 1.4.16).

It also follows that unless the distribution of X is a point mass (which is a trivial case), λ is strictly concave on I. We assume this henceforth. Note that it could be that I is simply the singleton $[0, 0]$. This is not an interesting case, and we will show later that in our setting I is larger than that.

The Fenchel conjugate of λ is given by

$$\lambda^*(\eta) = \sup_{z \geq 0} \lambda(z) - \eta \cdot z.$$

We note a few properties of λ^*. First, since $\lambda(0) = 0$ and $\lambda(z) < \infty$, λ^* is well defined and non-negative (but perhaps equal to infinity for some η). Second, since λ is equal to $-\infty$ whenever it is not finite, the supremum is attained on I, unless it is infinity. Third, since λ is strictly concave on I, $\lambda(z) - \eta \cdot z$ is also concave there, and so the supremum is a maximum and is attained at a single point $z \in I$ whenever it is finite. Additionally, since λ is smooth on I, this single point z satisfies $\lambda'(z) = \eta$ if $z > 0$ (equivalently, if $\lambda^*(\eta) > 0$).

I.e., if $\lambda'(z) = \eta$ for some z in the interior of I then

$$\lambda^*(\eta) = \lambda(z) - \eta \cdot z.$$

Finally, it is immediate from the definition that λ^* is weakly decreasing, and it is likewise easy to see that it is continuous. This, together with (8) and the fact that λ' is decreasing, yields that $\lambda^*(\eta) = \lambda(0) = 0$ whenever $\eta \geq \sup_{z \geq 0} \lambda'(z)$. We summarize this in the following proposition.

Proposition 4. Let I be the interval on which λ is finite, and let $I^* = \{\eta : \exists z \in \text{int}I \text{ s.t. } \lambda'(z) = \eta\}$. Then

(1) λ^* is continuous, non-negative and weakly decreasing. It is positive and strictly decreasing on I^*.

(2) $\lambda^*(\eta) = 0$ whenever $\eta \geq \sup_{z \geq 0} \lambda'(z)$.

(3) If $\eta \in I^*$ and $\lambda'(z) = \eta$ then $\lambda^*(\eta) = \lambda(z) - \eta \cdot z$.

Given all this, we are ready to state and prove our first large deviations theorem.

Theorem 3. For every η such that $\eta > \inf_{z \in I} \lambda'(z)$ it holds that
\[P[Y_t \leq \eta \cdot t + o(t)] = e^{-\lambda^*(\eta) \cdot t + o(t)}. \]

Proof of Theorem 3. For the upper bound, we use a Chernoff bound strategy: for any \(z \geq 0 \)
\[P[Y_t \leq \eta \cdot t + o(t)] = P[e^{-zY_t} \geq e^{-z(\eta \cdot t + o(t))}], \]
and so by Markov’s inequality
\[P[Y_t \leq \eta \cdot t + o(t)] \leq \frac{E[e^{-zY_t}]}{e^{-z(\eta \cdot t + o(t))}}. \]
Now, note that \(E[e^{-zY_t}] = e^{-\lambda^*(z) \cdot t} \), and so
\[P[Y_t \leq \eta \cdot t + o(t)] \leq e^{-(\lambda^*(z) - z \cdot \eta) \cdot t + o(t)}. \]
Choosing \(z \geq 0 \) to maximize the coefficient of \(t \) yields
\[P[Y_t \leq \eta \cdot t + o(t)] \leq e^{-\lambda^*(\eta) \cdot t + o(t)}, \]
which is the desired lower bound.

We now turn to proving the upper bound. Denote by \(\nu \) the law of \(X \), and for some fixed \(z \) in the interior of \(I \) (to be determined later) define the probability measure \(\tilde{\nu} \) by
\[\frac{d\tilde{\nu}}{d\nu}(x) = \frac{e^{-zx}}{E[e^{-zX}]} = e^{\lambda(z) - zx}, \]
and let \(\tilde{X}_t \) be i.i.d. random variables with law \(\tilde{\nu} \). Note that
\[E[\tilde{X}] = \frac{E[Xe^{-zX}]}{E[e^{-zX}]} = \lambda'(z). \]
Now, fix any \(\eta_1, \eta_2 \) such that \(\eta_1 < \eta < \eta_2 \) and \(\lambda'(z) = \eta_2 \) for some \(z \) in the interior of \(I \); this is possible since \(\eta > \inf_{z \in I} \lambda'(z) \). This is the \(z \) we choose to take in the definition of \(\tilde{\nu} \). If we think of \(\eta_2 \) as being close to \(\eta \) then the expectation of \(\tilde{X} \) is equal to \(\eta_2 \), is close to \(\eta \).
We have thus “tilted” the random variable \(X \), which had expectation \(\mu \), to a new random variable with expectation close to \(\eta \).

We can bound
\[P[Y_t \leq \eta \cdot t + o(t)] \geq P[\eta_1 \cdot t \leq Y_t \leq \eta \cdot t + o(t)] = \int_{\eta_1 t}^{\eta t} 1 \ d\nu(t), \]
\[22 \]
where \(\nu(t) \) is the \(t \)-fold convolution of \(\nu \) with itself, and hence the law of \(Y_t \). It is easy to verify\(^\text{19}\) that \(d\nu(t)(y) = e^{zy - \lambda(z)t} \, d\tilde{\nu}(t)(y) \), and so
\[
e^{-\lambda(z)\cdot t} \int_{\eta t}^{\eta t+o(t)} e^{zy} \, d\tilde{\nu}(t)(y),
\]
which we can bound by taking the integrand out of the integral and replacing \(y \) with the lower integration limit:
\[
\geq e^{(\eta z - \lambda(z))\cdot t} \int_{\eta t}^{\eta t+o(t)} 1 \, d\tilde{\nu}(t).
\]
Since the law of \(\tilde{Y}_t = \sum_{\tau=1}^t \tilde{X}_\tau \) is \(\nu(t) \), this is equal to
\[
e^{(\eta z - \lambda(p))\cdot t} \mathbb{P} \left[\eta \cdot t \leq \tilde{Y}_t \leq \eta \cdot t + o(t) \right].
\]
Since \(\eta < \mathbb{E} \left[\tilde{X} \right] < \eta \) we have that \(\lim_t \mathbb{P} \left[\eta \cdot t \leq \tilde{Y}_t \leq \eta \cdot t + o(t) \right] = 1 \), by the law of large numbers. Hence
\[
\liminf_{t \to \infty} \frac{1}{t} \log \mathbb{P} \left[Y_t \leq \eta \cdot t + o(t) \right] \geq \eta z - \lambda(z),
\]
which, by (8), and recalling that \(z = (\lambda')^{-1}(\eta) \), can be written as
\[
\liminf_{t \to \infty} \frac{1}{t} \log \mathbb{P} \left[Y_t \leq \eta \cdot t + o(t) \right] \geq -\lambda^*(\eta) - (\eta - \eta_z) \cdot (\lambda')^{-1}(\eta).
\]
Taking the limit as \(\eta \) approaches \(\eta_2 \) yields
\[
\liminf_{t \to \infty} \frac{1}{t} \log \mathbb{P} \left[Y_t \leq \eta \cdot t + o(t) \right] \geq -\lambda^*(\eta_2).
\]
We now consider two cases. First, assume that \(\eta \leq \sup_{z \geq 0} \lambda'(z) \). In this case we can choose \(\eta_2 \) arbitrarily close to \(\eta \), and by the continuity of \(\lambda^* \) we get that
\[
\liminf_{t \to \infty} \frac{1}{t} \log \mathbb{P} \left[Y_t \leq \eta \cdot t + o(t) \right] \geq -\lambda^*(\eta),
\]
or equivalently
\[
\mathbb{P} \left[Y_t \leq \eta \cdot t + o(t) \right] \geq e^{-\lambda^*(\eta)\cdot t + o(t)}.
\]
The second case is that \(\eta > \sup_{z \geq 0} \lambda'(z) \). In this case \(\lambda^*(\eta) = 0 \) (Proposition 4). Also, (9) holds for any \(\eta_2 < \sup_{z \geq 0} \lambda'(z) \) and thus it holds for \(\eta_2 = \sup_{z \geq 0} \lambda'(z) \). But then \(\lambda^*(\eta_2) = 0 = \lambda^*(\eta) \), and so we again arrive at the same conclusion. \(\square \)

The next proposition is similar in spirit, and in some sense is stronger than the previous, as it shows that the same rate applies to the event that the sum is below the threshold at all time periods prior to \(t \), rather than just at period \(t \). It furthermore does not require

\(^{19}\text{See, e.g., Durrett (1996, Page 74) or note that the Radon-Nikodym derivative between the law of } X \text{ and } \tilde{X} \text{ is } e^{zx - \lambda(z)}, \text{ and so the derivative between the laws of } (X_1, \ldots, X_t) \text{ and } \left(\tilde{X}_1, \ldots, \tilde{X}_t \right) \text{ is } e^{z(x_1 + \cdots + x_t) - \lambda(z)t}.\)
the threshold to be linear, but only asymptotically and from one direction; both of these generalizations are important.

Proposition 5. For every \(\eta \) such that \(\eta > \inf_{z \in I} \lambda'(z) \), and every sequence \(\{y_t\}_{t \in \mathbb{N}} \) with \(\liminf_t y_t/t = \eta \) and \(\mathbb{P}[Y_t \leq y_t] > 0 \) it holds that

\[
\mathbb{P} \left[\bigcap_{\tau=1}^{t} \{Y_\tau \leq y_\tau\} \right] = e^{-\lambda^*(\eta) \cdot t + o(t)}.
\]

Proof of Proposition 5. Let \(E_t \) be the event \(\bigcap_{\tau=1}^{t} \{Y_\tau \leq y_\tau\} \). Let \(\{t_k\} \) be a sequence such that \(\lim_k y_{t_k}/t_k = \eta \). For every \(t \) let \(t' \) be the largest \(t_k \) with \(t_k \leq t \). Then by inclusion we have that

\[
\frac{1}{t} \log \mathbb{P}[E_t] \leq \frac{1}{t'} \log \mathbb{P}[Y_{t'} \leq y_{t'}].
\]

Using the same Chernoff bound strategy of the proof of Theorem 3, we get that

\[
\frac{1}{t} \log \mathbb{P}[E_t] \leq -\lambda^*(y_{t'}/t').
\]

The continuity of \(\lambda \) implies that taking the limit superior of both sides yields

\[
\limsup_t \frac{1}{t} \log \mathbb{P}[E_t] \leq -\lambda^*(\eta),
\]

or

\[
\mathbb{P}[E_t] \leq e^{-\lambda^*(\eta) \cdot t + o(t)}.
\]

To show the other direction, define (as in the proof of Theorem 3) \(\tilde{X}_t \) to be i.i.d. random variables with law \(\tilde{\nu} \) given by

\[
\frac{d\tilde{\nu}}{d\nu}(x) = e^{\lambda(z)-zx},
\]

where \(\nu \) is the law of \(X \), and \(z \in I \) is chosen so that \(\lambda'(z) = \eta_2 \) for some \(\eta_1 < \eta_2 < \eta \). Denoting \(\epsilon = \eta - \eta_1 \), it follows from inclusion that

\[
\mathbb{P}[E_t] \geq \mathbb{P}[E_t \cap \{Y_t \geq y_t - \epsilon \cdot t\}].
\]

Now, the Radon-Nikodym derivative between the laws of \((X_1, \ldots, X_t) \) and \(\left(\tilde{X}_1, \ldots, \tilde{X}_t\right) \) is \(e^{z(x_1+\cdots+x_t)-\lambda(z)t} \). Hence

\[
\mathbb{P}[E_t] \geq \mathbb{E} \left[1_{E_t} \cdot 1_{Y_t \geq y_t - \epsilon \cdot t} \right] = \mathbb{E} \left[1_{\tilde{E}_t} \cdot 1_{\tilde{Y}_t \geq y_t - \epsilon \cdot t} \cdot e^{z\tilde{Y}_t - \lambda(z)t} \right],
\]

where \(\tilde{E}_t \) is the event \(\bigcap_{\tau=1}^{t} \{\tilde{Y}_\tau \leq y_\tau\} \). We can bound this expression by taking \(e^{zY_t - \lambda(z)t} \) out of the integral and replacing it with the lower bound \(y_t - \epsilon \cdot t \). This yields

\[
\mathbb{P}[E_t] \geq e^{z(y_t-\epsilon \cdot t)-\lambda(z)t} \cdot \mathbb{P} \left[\tilde{E}_t \cap \{\tilde{Y}_t \geq y_t - \epsilon \cdot t\} \right].
\]

Since the expectation of \(\tilde{Y}_t/t \) is strictly between \(\eta = \liminf_t y_t/t \) and \(\eta - \epsilon \), we have that

\[
\lim_t \mathbb{P} \left[\tilde{Y}_t \geq y_t - \epsilon \cdot t \right] = 1 \text{ by the weak law of large numbers.}
\]

By the strong law of large
numbers and the Markov Property of $\{\hat{Y}_t\}$ we have that $\lim_t \mathbb{P}[\hat{E}_t] > 0$; $\{\hat{Y}_t\}$ is indeed Markov since $\{\hat{X}_t\}$ are i.i.d. Thus $\lim_t \mathbb{P}[\hat{E}_t \cap \{\hat{Y}_t \geq y_t - \epsilon \cdot t\}] > 0$ and

$$\liminf_t -\frac{1}{t} \log \mathbb{P}[E_t] \leq z \cdot \eta_1 - \lambda(z).$$

Proceeding as in the proof of Theorem 3 yields that

$$\mathbb{P} [E_t] \geq e^{-\lambda^*(\eta) \cdot t + o(t)}. \quad \Box$$

Appendix B. Application of Large Deviation Estimates

In this section we prove a number of claims regarding the functions λ_θ and λ^*_θ. Recall that for $\theta \in \{h, l\}$

$$\lambda_h(z) := -\log \mathbb{E}_h [e^{-z \ell}] \quad \lambda_l(z) := -\log \mathbb{E}_l [e^{z \ell}],$$

where ℓ is a random variable with the same law as any ℓ_i, and

$$\lambda^*_\theta(\eta) = \max_z \lambda_\theta(z) - \eta \cdot z.$$

We first note that by the definition of λ_θ we have that

$$\lambda_h(z) = -\log \int \exp \left(-z \log \frac{d\mu_h}{d\mu_l}(s) \right) d\mu_h(s) = -\log \int \left(\frac{d\mu_l}{d\mu_h}(s) \right)^z d\mu_h(s).$$

It follows immediately that there is a simple connection between λ_h and λ_l

$$\lambda_l(z) = \lambda_h(1 - z).$$

Furthermore, as for every η between $\mathbb{E}_h [\ell]$ and $\mathbb{E}_l [\ell]$ the maximum in the definition of λ^*_h is achieved for some $z \in (0, 1)$, it follows that there is also a simple connection between λ^*_h and λ^*_l:

$$\lambda^*_l(\eta) = \lambda^*_h(-\eta) - \eta.$$

We will accordingly state some results in terms of λ_h and λ^*_h only. It also follows from (10) that the interval I on which λ_h is finite contains $[0, 1]$. Since from the definitions we have that $\lambda'_h(0) = \mathbb{E}_h [\ell]$, and since $\lambda'_h(1) = \mathbb{E}_l [\ell]$ by the relation between λ_h and λ_l, we have shown the following lemma.

Lemma 4. $\lambda_\theta(z)$ and $\lambda^*_\theta(\eta)$ are finite for all $z \in [0, 1]$ and $\eta \in (\mathbb{E}_l[\ell], \mathbb{E}_h[\ell])$. Furthermore, (12) $\lambda_h(z) = \lambda_l(1 - z)$ and $\lambda^*_h(\eta) = \lambda^*_l(-\eta) - \eta$.

25
Proof of Lemma 2. Given Lemma 4, Lemma 2 is an immediate corollary of Theorem 3.

The following simple observation will be useful on several occasions:

Lemma 5. Let \(r_a = \lambda_\alpha^*(0) \). Then \(r_a = \max_{z \in (0,1)} \lambda_h(z) = \max_{z \in (0,1)} \lambda_i(z) = \lambda_i^*(0) \), \(r_a < \min \{ \mathbb{E}_h[\ell], -\mathbb{E}_d[\ell] \} \), and \(\min \{ \lambda_h^*(r_a), \lambda_i^*(r_a) \} > 0 \).

Proof of Lemma 5. That \(r_a = \max_{z \in (0,1)} \lambda_h(z) = \max_{z \in (0,1)} \lambda_i(z) = \lambda_i^*(0) \) follows immediately from the definitions. Now, note that \(E_h[\ell_1] = \lambda_h^*(0) \). Thus \(r_a < E_h[\ell] \) is a simple consequence of the fact that \(r_a = \lambda_i^*(0) = \max_{z \geq 0} \lambda(z) \), that this maximum is obtained in \((0,1)\), and that \(\lambda_h \) is strictly concave. It follows from the same considerations that \(r_a < -\mathbb{E}_d[\ell] \). Finally, by Proposition 4, \(\lambda_i^*(r_a) > 0 \) as \(\lambda_h(0) < r_a < \lambda_h'(1) \). The same arguments show that \(r_a < -\mathbb{E}_d[\ell] \) and \(\lambda_i^*(r_a) > 0 \).

Proof of Fact 1. Consider the case \(\Theta = h \). As shown in Lemma 1 the probability that the agent makes a mistake is equal to the probability that the LLR is below \(L(\alpha^h) \). Thus, Lemma 2 allows us to characterize this probability explicitly:

\[
\mathbb{P}_h [a_i^{\tau} \neq \alpha^\theta] = \mathbb{P}_h [R_i^\tau \leq L(\alpha^h)] = \mathbb{P}_h [R_i^\tau \leq o(t)] = e^{-\lambda_h^*(0) \cdot t + o(t)}.
\]

An analogous argument yields that \(\mathbb{P}_i [a_i^{\tau} \neq \alpha^\theta] = e^{-\lambda_i^*(0) \cdot t + o(t)} \). By (12) \(\lambda_h^*(0) = \lambda_i^*(0) \).

APPENDIX C. MANY AGENTS

We define for each \(t \) the action \(\alpha_t^{\min} \) to be the lowest action (i.e., having the lowest \(L(\alpha) \)) that is taken by any agent with positive probability at time \(t \), and observe that \(\alpha_t^{\min} \) is equal to \(\alpha^i \) for all \(t \) large enough. We define

\[
G_t = \cap_{i=1}^n \cap_{\tau=1}^t \{ a_i^{\tau} = \alpha_t^{\min} \}.
\]

Proof of Lemma 3. Note first, that each agent chooses action \(\alpha_1^{\min} \) in the first period if the likelihood ratio she infers from her first private signal is at most \(L(\alpha_1^{\min}) \). Hence

\[
G_1 = \bigcap_{1 \leq i \leq n} \{ a_1^i = \alpha_1^{\min} \} = \bigcap_{1 \leq i \leq n} \{ R_1^i \leq L(\alpha_1^{\min}) \}.
\]

Thus \(G_1 \) is an intersection of conditionally independent events. Assume now that all agents choose the action \(\alpha_t^{\min} \) up to period \(t - 1 \); that is, that \(G_{t-1} \) has occurred, which is a necessary condition for \(G_t \). What would cause any one of them to again choose \(\alpha_t^{\min} \) at period \(t \)? It is easy to see that there will be some threshold \(q_l^i \) such that, given \(G_{t-1} \), agent \(i \) will choose \(\alpha_t^{\min} \) if and only if her private likelihood ratio \(P_t^i \) is lower than \(q_l^i \). By the symmetry of the
equilibrium, q_t^i is independent of i, and so we will simply write it as q_t. It follows that

$$G_t = G_{t-1} \cap \bigcap_{1 \leq i \leq n} \{R_t^i \leq q_t\}.$$

Therefore, by induction, and if we denote $q_1 = \mathcal{L}(\alpha_{\tau_{\text{min}}})$, we have that

$$G_t = \bigcap_{1 \leq i \leq n} \{R_t^i < q_t\}.$$

Now, note that the event that agent i chooses $\alpha_{\tau_{\text{min}}}$ in all periods is not independent of the event that some other agent j does the same. Still, by rearranging the above equation we can write G_t as an intersection of conditionally independent events:

$$G_t = \bigcap_{1 \leq i \leq n} \left(\bigcap_{1 \leq \tau \leq t} \{R_t^i \leq q_t\} \right),$$

and if we denote

$$W_t^i = \bigcap_{1 \leq \tau \leq t} \{R_t^i \leq q_t\},$$

then the W_t^i's are conditionally independent, and

$$G_t = \bigcap_{1 \leq i \leq n} W_t^i. \quad \Box$$

Proposition 6. The threshold q_t is characterized by the recursive relation

\[(13) \quad q_t = \mathcal{L}(\alpha_t) - (n - 1) \cdot \log \frac{\mathbb{P}_h[W_{t-1}^1]}{\mathbb{P}_l[W_{t-1}^1]} \quad \text{and} \quad W_t^i = \bigcap_{1 \leq \tau \leq t} \{R_t^i \leq q_t\}.\]

Proof of Proposition 6. Agent 1’s log-likelihood ratio conditional on $\cap_{i=1}^n W_{t-1}^i$ at time t equals b

$$L_t^1 = R_t^1 + \log \frac{\mathbb{P}_h[W_{t-1}^1]}{\mathbb{P}_l[W_{t-1}^1]}.$$

Since the W_{t-1}^i’s are conditionally independent, we have that

$$L_t^1 = R_t^1 + \sum_{i=1}^n \log \frac{\mathbb{P}_h[W_{t-1}^i]}{\mathbb{P}_l[W_{t-1}^i]}.$$

Finally, by symmetry, all the numbers in the sum are equal, and

$$L_t^1 = R_t^1 + (n - 1) \cdot \log \frac{\mathbb{P}_h[W_{t-1}^1]}{\mathbb{P}_l[W_{t-1}^1]}.$$
Now, the last addend is just a number. Therefore, if we denote

\[q_t = \mathcal{L}(\alpha^l) - (n - 1) \cdot \log \frac{\mathbb{P}_h[W_{t-1}^1]}{\mathbb{P}_l[W_{t-1}^1]}, \]

then

\[L^1_t = R^1_t - q_t + \mathcal{L}(\alpha^l), \]

and \(L^1_t \leq \mathcal{L}(\alpha^l) \) (and thus \(a^1_t = \alpha^l \)) whenever \(P^1_t \leq q_t \). \(\square \)

Lemma 6. \(q_t \geq \mathcal{L}(\alpha_{\text{min}}^l) \) for all \(t \).

Proof of Lemma 6. Let \(F_h \) and \(F_l \) be the cumulative distribution functions of a private log-likelihood ratio \(\ell \), conditioned on \(\Theta = h \) and \(\Theta = l \), respectively. Then it is easy to see that \(F_h \) stochastically dominates \(F_l \), in the sense that \(F_l(x) \geq F_h(x) \) for all \(x \in \mathbb{R} \). It follows that the joint distribution of \(\{ R^l_t \}_{\tau \leq t} \) conditioned on \(\Theta = h \) dominates the same distribution conditioned on \(\Theta = l \), and so \(\mathbb{P}_h[W^1_t] \leq \mathbb{P}_l[W^1_t] \). Hence \(q_t \geq \mathcal{L}(\alpha_{\text{min}}^l) \). \(\square \)

Lemma 7. There is a constant \(C > 0 \) such that \(\mathbb{P}_l[W^1_t] \geq C \) for all \(t \).

Proof of Lemma 7. Since the events \(W^1_t \) are decreasing, we will prove the lemma by showing that

\[\lim_{t \to \infty} \mathbb{P}_l[W^1_t] > 0, \]

which by definition is equivalent to

\[\lim_{t \to \infty} \mathbb{P}_l[\cap_{\tau \leq t} \{ R^l_\tau \leq q_\tau \}] > 0. \]

Since \(q_t \geq \mathcal{L}(\alpha_{\text{min}}^l) \), it suffices to prove that

\[\lim_{t \to \infty} \mathbb{P}_l[\cap_{\tau \leq t} \{ R^l_\tau \leq \mathcal{L}(\alpha_{\text{min}}^l) \}] > 0. \]

To prove the above, note that agents eventually learn \(\Theta \), since the private signals are informative. Therefore, conditioned on \(\Theta = l \), the limit of \(R^l_t \) as \(t \) tends to infinity must be \(-\infty\). Thus, with probability 1, for all \(t \) large enough it does hold that \(R^l_t \leq \mathcal{L}(\alpha_{\text{min}}^l) \). Since each of the events \(W^1_t \) has positive probability, and by the Markov property of the random walk \(R^l_t \), it follows that the event \(\cap_{\tau \leq t} \{ R^l_\tau \leq \mathcal{L}(\alpha_{\text{min}}^l) \} \) has positive probability. Finally, by monotonicity

\[\lim_{t \to \infty} \mathbb{P}_l[W^1_t] > \mathbb{P}_l[\cap_{\tau \leq t} \{ R^l_\tau \leq \mathcal{L}(\alpha_{\text{min}}^l) \}] > 0. \]

\(\square \)

It follows immediately from this Lemma 7 and Proposition 6 that

\[\lim_{t \to \infty} \frac{q_t}{t} = -(n - 1) \lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}_h[W^1_{t-1}], \]

(15)
provided that the limit exists.

Let \(q = \liminf_{t \to \infty} q_t / t \). Since \(W_t^i = \bigcap^t_{\tau=1} \{ R^i_\tau \leq q_\tau \} \), it follows from Proposition 5 that

\[
- \lim_{t \to \infty} \frac{1}{t} \log \mathbb{P}_h[W_t^i] = \lambda^*_h(q),
\]

provided that \(q > \inf_z \lambda^*_h(z) \). But \(q \geq 0 \) (Lemma 6), and so this indeed holds. Thus, by (15), we have proved the following proposition:

Proposition 7. The limit \(q = \lim_{t \to \infty} \frac{q_t}{t} \) exists, and

\[
q = (N - 1) \lambda^*_h(q).
\]

Proof of Proposition 2. Recall that \(\lambda^*_h \) is strictly convex, and that \(\lambda^*_h(D) = 0 \), where we denote \(D = \mathbb{E}_h[\ell] \). Hence

\[
\lambda^*_h(q) < \frac{q}{D} \lambda^*_h(D) + \frac{D - q}{D} \lambda^*_h(0) = \frac{D - q}{D} \lambda^*_h(0).
\]

Substituting \((n - 1)\lambda^*_h(q)\) for \(q \) and simplifying yields

\[
\lambda^*_h(q) < \frac{D}{D/\lambda^*_h(0) + n - 1}.
\]

Since \(\lambda^*_h(0) < D \) (Lemma 5) we have shown that

\[
n \lambda^*_h(q) < D,
\]

and so

\[
\frac{n}{n - 1} q = n \lambda^*_h(q) < D.
\]

We now turn to proving Proposition 1, which states that conditioned on groupthink—that is, conditioned on the event \(G_t \)—all agents have, with high probability, a private LLR \(R^i_t \) that strongly indicates the correct action. In fact, we prove a stronger statement, which implies Proposition 1: the private LLR is arbitrarily close to \(q \cdot t \), the asymptotic threshold for \(R^i_t \) above which groupthink ends.

Proposition 8. For every \(\epsilon > 0 \) it holds that

\[
\lim_{t \to \infty} \mathbb{P}_h[R^i_t > t \cdot (q - \epsilon) \text{ for all } i \mid G_t] = 1,
\]

where, as above, \(q \) is the solution to \(q = (n - 1) \lambda^*_h(q) \).

Proof. By Theorem 3 we know that

\[
\lim_{t \to \infty} - \frac{1}{t} \log \mathbb{P}_h[R^i_t \leq t \cdot (q - \epsilon)] = \lambda^*_h(q - \epsilon).
\]
Since \(\lambda_h^*(q - \epsilon) > \lambda_h^*(q) \) it follows that
\[
\lim_{t \to \infty} - \frac{1}{t} \log \mathbb{P}_h[A_t] = n \cdot \lambda_h^*(q - \epsilon) > n \cdot \lambda_h^*(q),
\]
where \(A_t \) is the event \(\{ R_t^i \leq t \cdot (q - \epsilon) \) for all \(i \}. \) Since for \(t \) high enough the event \(A_t \) is included in \(G_t \), and since
\[
\lim_{t \to \infty} - \frac{1}{t} \log \mathbb{P}_h[G_t] = n \cdot \lambda_h^*(q),
\]
it follows that \(\mathbb{P}_h[A_t | G_t] \) decays exponentially with \(t \). Hence \(\mathbb{P}_h[A_t^c | G_t] \to 1 \), which is the claim we set to prove. \(\square \)

Appendix D. Early Period Mistake Probabilities

We now prove Theorem 2. We assume that each agent \(i \) observes a Normal signal \(s^i_1 \sim \mathcal{N}(m_\Theta, n) \) with mean
\[
m_\Theta = \begin{cases} +1 & \text{if } \Theta = h \\ -1 & \text{if } \Theta = l \end{cases}
\]
and variance \(n \).\(^{20}\) Note, that for any number of agents the precision of the joined signal equals 1, and thus the total information the group receives every period is fixed, independent of \(n \).

We assume that the prior belief assigns probability one-half to each state \(p_0 = \frac{1}{2} \) and that there are two actions \(A = \{ l, h \} \) and each agent just wants to match the state, as in the “matching the state” example (Section 2.5.1). As in the first period each agent bases her decision only on her own private signal, she takes the action \(h \) whenever her signal \(s^i_1 \) is greater than 0 and the action \(l \) otherwise:
\[
a^i_1 = \begin{cases} h & s^i_1 > 0 \\ l & s^i_1 \leq 0 \end{cases}.
\]
The private likelihood of each agent after observing the first \(t \) signals is given by
\[
R^i_t = \log \frac{\prod_{\tau=1}^{t} \exp\left(-\frac{(s^i_\tau - 1)^2}{2n} \right)}{\prod_{\tau=1}^{t} \exp\left(-\frac{(s^i_\tau + 1)^2}{2n} \right)} = \frac{2}{n} \sum_{\tau=1}^{t} s^i_\tau.
\]

\(^{20}\)All results generalize to non-symmetric means, since only the difference \(|m_h - m_l| \) enters the Bayesian calculations.
The probability that an agent takes the correct action Θ in period 1 (conditional only on her own first period signal) is thus given by

\[
P_h [\Theta = a_1] = P_h [s^i_1 \geq 0] = 1 - \Phi \left(\frac{-m_h}{\sqrt{n}} \right) = \Phi \left(\frac{1}{\sqrt{n}} \right).
\]

By symmetry, $P_l [a_1 = \Theta] = \Phi(1/\sqrt{n})$ as well. Denote $\pi_n = \Phi \left(\frac{1}{\sqrt{n}} \right)$ and by $w_1 = |\{i \in n: a^i_1 = h\}|$ the number of agents taking the action $a^i_1 = h$. Let $\kappa_n = \log(\pi_n/(1 - \pi_n))$, and note that $2/\sqrt{n} \geq \kappa_n \geq 1/\sqrt{n}$.

As the action of each agent is independent, the LLR of agent i at the beginning of period 2 is given by

\[
L^i_2 = \frac{2}{n} \sum_{\tau=1}^{2} s^i_\tau - (2w_1 - n) \kappa_n - \text{sgn}(s^i_1) \kappa_n.
\]

We define the private part of the LLR at the beginning of period 2 as

\[
\hat{R}^i_2 = \frac{2}{n} \sum_{\tau=1}^{2} s^i_\tau - \text{sgn}(s^i_1) \kappa_n
\]

and the public part of the LLR as

\[
L^p_2 = (2w_1 - n) \kappa_n.
\]

Let α_m be the action that the majority of the agents chose in the first period (with $\alpha_m = l$ in case of a tie). Note that $\alpha_m = h$ iff $L^p_2 > 0$. Let E_t be the event that all agents take the first period majority action α_m in all subsequent periods up to time t, i.e., $a^i_s = \alpha_m$ for all $1 < s \leq t$.

Proposition 9. The probability of E_t goes to one as the number of agents goes to infinity, i.e.,

\[
\lim_{n \to \infty} P [E_t] = 1.
\]

This is a rephrasing of Theorem 2. We in fact provide a finitary statement and prove that

\[
P [E_t] \geq 1 - 20 \cdot t \cdot \sqrt{\frac{\log{n}}{n}}.
\]
We first show that the probability of the event E_2 that all agents take the same action in period 2 goes to one. The LLR of agent i at the beginning of period 2 is given by

$$L^i_2 = \frac{2}{N} \sum_{\tau=1}^{2} s^i_{\tau} + (2w_1 - n) \kappa_n - \text{sgn}(s^i_1) \kappa_n.$$

$$= \hat{R}^i_2 + L^p_2.$$

To show that E_2 has high probability we show that with high probability it holds that L^p_2, the public belief induced by the first period actions, is large (in absolute value) and that the private beliefs are all small. Intuitively, this holds since both are (approximately) zero mean Normal, with L^p_2 having constant variance and \hat{R}^i_2 having variance of order $1/\sqrt{n}$. It will then follow that with high probability the signs of L^p_2 and L^i_2 are equal for all i, which is a rephrasing of the definition of E_2.

Let A be the event that all of the private signals in the first t periods have absolute values at most $M = 4\sqrt{n\log n}$. Using the union bound (over the agents and time periods), this happens except with probability at most

$$\mathbb{P}[A^c] \leq \sum_{i} \sum_{t} \mathbb{P}[|s^i_t| > M] \leq t \cdot n \cdot 2 \cdot \Phi \left(-\frac{1}{2} \frac{M}{\sqrt{n}} \right);$$

the $1/2$ factor in the argument of Φ is taken to account for the fact that the private signals do not have zero mean. Since $\Phi(-x) < e^{-x^2/2}$ for all $x < -1$, we have that

$$\mathbb{P}[A^c] \leq \frac{2 \cdot t}{n}.$$

Let

$$\hat{R}^i_\tau = \frac{2}{n} \sum_{\tau'=1}^{\tau} s^i_{\tau'} - \text{sgn}(s^i_1) \kappa_n.$$

Thus the event A implies that

$$|\hat{R}^i_\tau| \leq \frac{2}{n} \cdot t \cdot M + \kappa_n \leq 8 \cdot t \cdot \sqrt{\frac{\log n}{n}} + \frac{2}{\sqrt{n}} \leq 9 \cdot t \cdot \sqrt{\frac{\log n}{n}}.$$

Let B be the event that the absolute value of the public LLR L^p_2 is at least $9 \cdot t \cdot \sqrt{\frac{\log n}{n}}$; this is chosen so that the intersection of A and B implies E_2. Conditioned on $\Theta = h$, the random variable w_1 has the unimodal binomial distribution $B(n, \pi_n)$, which has mode $\lfloor (n+1) \cdot \pi_n \rfloor$. The probability at this mode is easily shown to be at most $1/\sqrt{n}$. The same applies conditioned on $\Theta = l$. It follows that the probability of B^c, which by definition is equal to the probability that $|w_1 - n/2| \leq \frac{1}{\kappa_n} 9 \cdot t \cdot \sqrt{\frac{\log n}{n}}$, is at most $\frac{2}{\kappa_n} 9 \cdot t \cdot \sqrt{\frac{\log n}{n}}$ times the
probability of the mode, or
\[P[B^c] \leq \frac{2}{\kappa n} \cdot 9 \cdot t \cdot \sqrt{\log n} \cdot \frac{1}{\sqrt{n}} \leq 18 \cdot t \cdot \sqrt{\log n / n}. \]

Together with the bound on the probability of \(A \), we have that
\[P[A \text{ and } B] \geq 1 - 20 \cdot t \cdot \sqrt{\log n / n}, \]
and in particular
\[P[E_2] \geq 1 - 20 \cdot \sqrt{\log n / n}. \]

We now claim that \(A \cap B \) implies \(E_t \). To see this, note that as \(A \cap B \) implies \(E_2 \), the agents all observe at period 2 that no other agent has a strong enough signal to dissent with the first period majority. This only strengthens their belief in the first period majority, requiring them an even higher (in absolute value) threshold than \(L^p \) to choose another action; the formal proof of this statement is identical to the proof of Lemma 6. But since, under the event \(A \cap B \), each of their private LLRs \(\hat{R}^i_\tau \) is weaker than \(L^p_2 \) for all \(\tau \leq t \), they will not do so at period 3, or, by induction, in any of the periods prior to period \(t \). This completes the proof of 9, and thus of Theorem 2.