FINANCIAL MARKET RISK PERCEPTIONS AND THE MACROECONOMY*

Carolin Pflueger
Emil Siriwardane
Adi Sunderam

Abstract

We provide evidence that financial market risk perceptions are an important driver of economic fluctuations. We introduce a novel measure of risk perceptions: the price of volatile stocks (PVS_t), defined as the book-to-market ratio of low-volatility stocks minus the book-to-market ratio of high-volatility stocks. PVS_t is high when perceived risk directly measured from surveys and option prices is low. Using our measure, we show that high perceived risk is associated with low risk-free interest rates, a high cost of capital for risky firms, and future declines in output and real investment. Perceived risk as measured by PVS_t falls after positive macroeconomic news. These declines are predictably followed by upward revisions in perceived risk, indicating that fluctuations in investor risk perceptions are not fully rational.

JEL codes: E32, E44, E71, G12, G41.

*This paper was previously circulated as “A Measure of Risk Appetite for the Macroeconomy.” We thank Andrei Shleifer (editor), Pol Antras (editor), and the referees, as well as Nick Barberis, Geert Bekaert, Pedro Bordalo, Michael Brennan, John Campbell, Josh Coval, Robert Engle, Xavier Gabaix, Nicola Gennaioli, Sam Hanson, Espen Henriksen, Bryan Kelly, Ralph Kojien, Arvind Krishnamurthy, Hanno Lustig, Ian Martin, Thomas Maurer, Stijn van Nieuwerburgh, Monika Piazzesi, Robert Ready, Larry Schmidt, Martin Schneider, Josh Schwartzstein, Jeremy Stein, Larry Summers, Laura Veldkamp, Luis Viceira, and Michael Weber for helpful comments. We also benefited from the input of seminar participants at the 2018 AQR Insight Award Presentation, BI-SHoF Conference 2017, CEF 2017, CITF 2017, Chicago Harris, CMU Tepper, Columbia, Federal Reserve Board, FRBSF conference on Advances in Finance Research 2017, Harvard, HEC-McGill Winter Finance Workshop, London School of Economics, McGill Desautels, NBER Fall 2017 Asset Pricing Meeting, NBER Fall 2018 Behavioral Finance Meeting, the New York Fed, Northwestern Kellogg, SFS Cavalcade, SITE 2017, Stanford, State Street, University of British Columbia, and University of Indiana. Siriwardane and Sunderam gratefully acknowledge funding from the Harvard Business School Division of Research.
I Introduction

Classic accounts of economic boom and bust cycles (Keynes (1937); Minsky (1977); Kindleberger (1978)) highlight the importance of financial markets in shaping economic fluctuations. In these accounts, a negative fundamental shock causes perceptions of risk to rise. Investors then value the safety of bonds and charge risky firms a high cost of capital. Consequently, real interest rates are low, firms invest less, and a recession ensues. This risk-centric view of business cycles has been formalized in recent theoretical work (Caballero and Farhi (2018); Caballero and Simsek (2020); Cochrane (2017)), but it has proven difficult to establish empirically because common proxies for financial market conditions are only weakly correlated with bond markets and the real economy.\(^1\)

In this paper, we propose a new measure of risk perceptions based on financial market prices and use it to assess how well risk-centric theories of the business cycle fit the U.S. experience since 1970. We use financial market prices because they capture firms’ cost of capital, a key channel through which perceptions of risk impact real outcomes in these theories. Our measure is based on the intuition that the stock prices of the riskiest, most volatile firms should be particularly sensitive to investor perceptions of risk. Thus, we measure perceived risk in the cross section of publicly-traded equities using the price of volatile stocks \(PVS_t\). We define \(PVS_t\) as the average book-to-market ratio of low-volatility stocks minus the average book-to-market ratio of high-volatility stocks, so that \(PVS_t\) is high when volatile stocks have relatively high prices.

We structure our empirical analysis around a stylized model that highlights the central economic forces in risk-centric theories of the business cycle. The model provides a roadmap for our empirical work by linking perceptions of risk, the price of volatile stocks, real interest rates, and real investment. In the model, risk aversion is constant, while expectations of risk vary over time. When investors perceive risk to be high, they value the safety of bonds because of precautionary savings motives. At the same time, they require a high return to invest in the riskiest firms in the economy. Thus, the cost of capital for these firms is high and the model analog of \(PVS_t\) is low. As in the standard Q-theory of investment, firms invest less when their cost of capital is high. The model therefore predicts that when perceived risk is high, \(PVS_t\), real interest rates, and real

\(^1\)As we discuss further below, a recent literature, including the seminal work of Bloom (2009) and Bloom et al. (2018), has shown that uncertainty impacts the macroeconomy because it causes firms to delay investment and hiring decisions. This mechanism is complementary to the cost of capital channel that we highlight.
investment should be low.

We begin our empirical analysis by confirming that PVS_t is indeed tied to investor perceptions of risk. We show that PVS_t is negatively correlated with direct measures of perceived risk based on option prices and equity analyst forecasts. We obtain similar results using surveys of loan officers and businesses, as well as the newspaper-based measure of Baker et al. (2016). PVS_t is low when banks report that they are tightening lending standards because they believe economic risk is rising and when small businesses report that they are pessimistic about the economy. We show that PVS_t also comoves with objective expectations of risk derived from statistical forecasting models, but the comovement is weaker than with measures of subjective risk perceptions.

Using PVS_t, we then explore whether the economic linkages highlighted by the model appear in the data, starting with the relationship between risky asset prices and real interest rates. In U.S. quarterly data from 1970 to 2016, the contemporaneous correlation between PVS_t and the one-year real interest rate is 64%, capturing the negative relationship between safe and risky asset prices in risk-centric theories of the business cycle. A one-standard deviation increase in PVS_t is associated with a 1.3 percentage point increase in the real rate. The positive correlation between PVS_t and the real rate holds in expansions and recessions, in high- and low-inflation environments, and controlling for measures of credit and equity market sentiment (Gilchrist and Zakrajšek (2012); Baker and Wurgler (2006)). In addition, we use monetary policy surprises in narrow windows around the Federal Reserve’s policy announcements to rule out discretionary monetary policy as an omitted variable driving both PVS_t and the real rate.

Consistent with the core mechanism in risk-centric theories of business cycles, we find that both PVS_t and the real rate are low when volatile firms’ cost of capital is high. In other words, when risk perceptions are high and the real rate is low, investors require a high return on capital for investing in volatile firms. Empirically, this means that low values of PVS_t and the real rate forecast high future returns on high-volatility stocks relative to low-volatility stocks. The fact that PVS_t – and its correlation with the real rate – reflect common variation in the compensation investors demand for holding volatile securities is consistent with the idea that it captures risk perceptions that are relevant to the macroeconomy.

Next, we analyze the relationship between perceptions of risk and the real economy. We show that low perceived risk as measured by PVS_t forecasts expansions in real investment, output, and
employment. A one-standard deviation increase in PVS_t is associated with an increase in the investment-capital ratio of 0.4% over the next four quarters. Over the same horizon, output rises 0.6% relative to potential and the unemployment rate decreases by 0.3%. Investment and employment have relationships with PVS_t over twice as strong as with the aggregate stock market, illustrating the importance of our focus on the cross section of stocks in measuring financial market risk perceptions. Overall, our analysis suggests that risk-centric theories of the business cycle capture important linkages between stock markets, bond markets, and the real economy.

After establishing the link between financial market risk perceptions and the macroeconomy, we use PVS_t to investigate why perceptions of risk vary. Using our measure, we find that risk perceptions decline on the heels of good news about the economy. PVS_t rises when GDP and corporate profit growth exceed the expectations of professional forecasters, indicating that positive surprises lead investors to view the economy as less risky. Thus, perceptions of risk appear to be shaped by recent events.

In the last part of the paper, we ask whether risk perceptions are rational, as assumed in our motivating model, or whether they over-extrapolate from recent news. Under rational expectations, revisions in expected risk should be unpredictable because expectations should only change in response to new information. By contrast, we find that high values of PVS_t, which indicate low perceived risk, reliably predict that investors will revise their expectations of risk upwards over the next two to three quarters. These results suggest that perceptions of risk embedded in financial markets are not fully rational, a possibility raised in the classical accounts of Keynes (1937), Minsky (1977), and Kindleberger (1978).

Our paper is related to several literatures in both macroeconomics and finance. Broadly speaking, theories of the business cycle have traditionally focused on either aggregate supply (Cooley and Prescott 1995) or aggregate demand (Keynes 1937). Our paper belongs to a recent literature arguing that perceptions of risk can influence aggregate demand through two complementary channels. First, as shown in the seminal work of Bloom (2009) and Bloom et al. (2018), heightened uncertainty increases the option value of delay, leading firms to temporarily pause investment and hiring. Second, when perceived risk is high, the cost of capital for risky investments is high, so firms invest less. Our paper offers empirical support for this cost of capital channel, which has been
the subject of much recent theoretical work.\footnote{See, e.g., Gourio (2012), Fernández-Villaverde et al. (2015), Basu and Bundick (2017), Caballero and Farhi (2018), and Caballero and Simsek (2020) for theoretical work on the cost of capital channel. To the extent that existing work studies the link between risk and real interest rates, it has typically focused on the secular decline in global real interest rates since the 1980s. See Laubach and Williams (2003); Cúrdia et al. (2015); Del Negro et al. (2017); Kozlowski et al. (2018a,b), among others. By contrast, we find that risk perceptions are important for understanding how real rates evolve over the business cycle.} We document that perceptions of risk embedded in the stock market connect more broadly with the bond market and the business cycle, and that these risk perceptions appear to not be fully rational.

Our paper is also related to a large body of work in finance seeking to link movements in asset prices to the business cycle. This literature has generally provided limited support for theories of risk-centric business cycles because canonical models imply that risk perceptions (and risk preferences) can be inferred from the aggregate stock market (Campbell and Cochrane (1999); Bansal and Yaron (2004)). It is well known that, unlike PVS_t, the aggregate stock market is only weakly correlated with the real rate and real investment (Campbell and Ammer (1993); Caballero (1999)).\footnote{Cochrane (1991) shows that aggregate stock returns are contemporaneously correlated with changes in investment, but similar to us he finds that removing the long-term trend in aggregate stock market valuations is important.} The difference between the aggregate stock market and PVS_t arises because PVS_t emphasizes volatile firms, while the aggregate market is dominated by larger, low-volatility firms. Volatile public firms are a small part of the aggregate market, but we show that they are similar in their investment behavior to private firms, which play a large role in the overall economy.\footnote{See, e.g., Davis et al. (2007); Asker et al. (2014); Zwick and Mahon (2017).} Thus, PVS_t likely captures perceptions of risk that are relevant for a significant part of the U.S. economy.

The disconnect between the aggregate stock market and the real economy also motivates our use of total volatility to measure risk in forming PVS_t. Volatility is a robust measure of risk that does not rely on the assumption that the aggregate stock market fully captures all economic activity – volatility increases with exposure to risks, regardless of what they are.\footnote{Our results are distinct from past research on idiosyncratic risk in the stock market, which has focused on the average return of high-volatility stocks (see Ang et al. (2006), among many others) or the average return on stocks that are more exposed to the common factor driving idiosyncratic volatility (Herskovic et al. (2016)). In contrast, we measure time-series variation in expected returns of high-volatility firms and link it to interest rates and macroeconomic fluctuations. In this way, our results also complement past research on the relationship between risk premia in stocks and bonds (Fama and French (1993); Lettau and Wachter (2011); Koijen et al. (2017)).} Our use of market prices in constructing PVS_t is complementary to approaches measuring risk perceptions using statistical models of macroeconomic or financial volatility and to the newspaper-based approach of Baker et al. (2016). Market prices reflect how investors’ forward-looking subjective expectations affect
firms’ cost of capital, a key channel in risk-centric theories of the business cycle. They are also readily available over long sample periods and in real time.

Finally, our analysis of risk perceptions connects to work in behavioral finance studying how investor sentiment and biased beliefs impact asset prices (for a summary see Barberis (2018)). While this literature has focused mainly on beliefs about the level of future cash flows, our results suggest that investor sentiment may also be driven by beliefs about risk. We show that PVS_t is correlated with measures of sentiment for both debt and equity markets, suggesting that variation in perceived risk induces common movements in sentiment across markets. The link between PVS_t and credit markets also implies that recent work connecting credit market sentiment to economic outcomes may in part capture movements in risk perceptions that are common across markets (e.g., Gilchrist and Zakrajšek (2012); López-Salido, Stein, and Zakrajšek (2017); Bordalo, Gennaioli, and Shleifer (2018); Mian, Sufi, and Verner (2017)).

The next section presents the motivating model, describes the data, and shows that PVS_t correlates with direct measures of investor risk perceptions. Section III provides an empirical assessment of risk-centric theories of the business cycle using PVS_t to measure perceived risk. In Section IV, we investigate why perceptions of risk vary and whether these movements are fully rational. Section V discusses our results, and Section VI concludes.

II A New Measure of Risk Perceptions

II.A Motivating Framework

We begin with a simple model to organize our empirical analysis and formalize the key elements of risk-centric theories of the business cycle. The model focuses on equilibrium relationships between perceived risk, the price of volatile stocks, the real interest rate, and investment. The real rate and firm stock prices are determined by investors who face time-varying risk. We model production as in the standard Q-theory of investment, meaning that firms invest up to the point where the expected return on a marginal unit of investment equals the return required by investors (Tobin (1969), Hayashi (1982)). Consequently, investment fluctuates in response to movements in asset prices. Though our setup is stylized, the economic forces that we highlight are common across models of
risk-centric business cycles (e.g., Gourio (2012), Jermann (1998), Kogan and Papanikolaou (2012), Fernández-Villaverde et al. (2015), Caballero and Simsek (2020)). All proofs can be found in the internet appendix.

II.A.1 Preferences

We assume a representative agent with constant relative risk aversion γ over aggregate consumption and time-discount rate β:

$$ U(C_t, C_{t+1}, \ldots) \equiv \sum_{s=0}^{\infty} \beta^s \frac{C_{t+s}^{1-\gamma}}{1-\gamma}. $$

(1)

The stochastic discount factor that determines asset prices is therefore:

$$ M_{t+1} = \frac{\partial U/\partial C_{t+1}}{\partial U/\partial C_t} = \beta \frac{C_{t+1}^{-\gamma}}{C_t^{-\gamma}}. $$

(2)

We model log aggregate consumption growth Δc_{t+1} as a simple heteroskedastic process: $\Delta c_{t+1} = \epsilon_{t+1}$, where ϵ_{t+1} is normal, mean zero, serially uncorrelated, and heteroskedastic with conditional variance given by:

$$ \mathbb{V}_t(\epsilon_{t+1}) = \exp(a - b\epsilon_t), $$

(3)

where $b > 0$. This assumption generates time variation in expected excess returns – and firms’ cost of capital – from exogenous changes in risk, as in Kandel and Stambaugh (1990), Bansal et al. (2012), and much of the literature on risk-centric recessions. Following a negative shock, volatility increases and future consumption becomes riskier, consistent with the evidence that risk rises in recessions (Bloom (2014), Nakamura et al. (2017), and Basu and Bundick (2017)). The exponential functional form for $\mathbb{V}_t(\epsilon_{t+1})$ ensures that it is positive.

II.A.2 Production

The production side of the model is a simplified version of the Q-theory framework described in Campbell (2017) Chapter 7. We assume that firms generate output according to a Cobb-Douglas
production function with capital as the only input: $Y_{it} = Z_{it} K_{it}$. Y_{it} is firm i’s output in period t, and K_{it} is its capital. Z_{it} is the firm’s total factor productivity, which we assume is driven by the same heteroskedastic shock as consumption.\(^6\)

$$Z_{it+1} = \exp \left(s_i \epsilon_{t+1} - \frac{1}{2} s_i^2 \mathbb{V}_t (\epsilon_{t+1}) \right).$$

(4)

Higher s_i means that firm i is riskier in the sense that its production is more volatile. The Jensen’s inequality term $-\frac{1}{2} s_i^2 \mathbb{V}_t (\epsilon_{t+1})$ ensures that expected total factor productivity is equalized across firms, so the model isolates differences in risk across firms. To incorporate differences in firm risk as simply as possible, we consider the case where there are two types of firms, H and L. We set $s_H > s_L$, so H-firms are riskier than L-firms. We assume that $s_i > \frac{\gamma}{2}$ for all firms. This assumption ensures that when perceived risk rises the increase in firm risk premia dominates the fall in the risk-free rate. Thus, the cost of capital rises for all firms, and aggregate investment falls.

Capital evolves according to $K_{it+1} = I_{it} + (1 - \delta) K_{it}$, where I_{it} is investment and δ is the depreciation rate. We assume that capital adjustment costs are given by $\Phi_{it} = \phi \left(\frac{I_{it}}{K_{it}} \right) K_{it}$, where $\phi' > 0$ when $I_{it} > 0$ and $\phi'' > 0$ everywhere. This assumption captures the idea that firms suffer production losses while new capital is being installed and that these losses increase with the rate of new investment.

We abstract away from capital structure and corporate financing decisions by assuming that firms are completely financed with equity and that there are no taxes. Thus, firm dividends are given by $D_{it} = Y_{it} - \Phi_{it}$. For simplicity, we assume capital depreciates fully each period ($\delta = 1$), so capital available for production in period $t + 1$ equals period t investment. We also assume that after one period of production firms die and a new generation of firms is born.\(^7\) With these assumptions, the time t and $t + 1$ dividends for a firm born at t take a particularly simple form: $D_{it} = -\Phi_{it}$, $D_{it+1} = Z_{it+1} K_{it+1}$. Firm i takes the stochastic discount factor M_{t+1} as exogenous.

\(^{6}\)As in many production-based models with heterogeneous firms (e.g., Zhang (2005)), we take a partial equilibrium approach and do not derive consumption from production and investment decisions.

\(^{7}\)These assumptions are made for tractability and shut off the dynamic response of investment to risk perceptions. The model nonetheless captures the basic channel that investment rises when asset prices are high and the cost of capital is low.
and maximizes the risk-adjusted present value of current and future dividends:

\[V_{it} = \max_{I_{it}} \{ D_{it} + E_t [M_{t+1}D_{it+1}] \}. \]

(5)

II.A.3 Asset Prices

We link firm investment to financial markets using the insight of Cochrane (1991, 1996) that the market return on a financial claim to the firm, \(R_{it+1} \), must equal the return on firm investment. The return on firm investment is the marginal benefit of an additional unit of investment divided by its marginal cost: \(R_{it+1} = Z_{it+1}/\phi' \left(\frac{I_{it}}{K_{it}} \right) \). The optimization problem (5) implies that firm \(i \)'s investment return satisfies the asset pricing Euler equation \(1 = E_t [M_{t+1}R_{it+1}] \). This in turn implies that firm \(i \)'s log expected return in excess of the log risk-free rate \(r_{ft} \) is given by:

\[\ln E_t [R_{it+1}] - r_{ft} = \gamma s_i V_t (\epsilon_{t+1}). \]

(6)

Eq. (6) says that risky firms’ expected returns (i.e., cost of capital) should move more with perceived risk \(V_t (\epsilon_{t+1}) \) than safe firms’. This simple observation is the reason we infer perceived risk using the cross section of firms.

Because expected returns are not observable in the data, our empirical measure of perceived risk uses firms’ book-to-market ratios. In the model, there is a one-to-one relation between a firm’s book-to-market ratio and its expected return:

\[\frac{K_{it+1}}{V_{it} - D_{it}} = E_t [R_{it+1}] \]. \n
(7)

The left-hand-side of Eq. (7) is the book-to-market ratio, that is the ratio of firm \(i \)'s capital to its ex-dividend valuation or the inverse of Tobin’s Q.

In our empirical work, we use the price of volatile stocks – the difference between the book-to-market ratios of low- and high-risk stocks – as our measure of perceived risk. In the model, we

8In reality, book-to-market ratios reflect both expected growth and expected returns. Thus, compared to using an aggregate valuation ratio, an added advantage of using the cross-section is that growth factors that simultaneously move all stock valuations will be differenced out (e.g., Fama and French (1992), Polk et al. (2006), Cochrane (2011)). We confirm in Section III.B that \(PV S_i \) in the data is mostly driven by variation in expected returns, not expected growth.
use log book-to-market ratios for tractability and define the model analogue of PV_{S_t} as:

$$PV_{S_t}^{model} = \ln \left(\frac{K_{Lt+1}}{V_{Lt} - D_{Lt}} \right) - \ln \left(\frac{K_{Ht+1}}{V_{Ht} - D_{Ht}} \right).$$ \hspace{1cm} (8)$$

Eqs. (6) and (7) imply that the price of volatile stocks is proportional to perceived risk:

$$PV_{S_t}^{model} = \ln E_t[R_{Lt+1}] - \ln E_t[R_{Ht+1}] = -\gamma (s_H - s_L) V_t (\varepsilon_{t+1}). \hspace{1cm} (9)$$

II.A.4 Risk-Free Rate

The log real risk-free rate r_{ft} is given by:

$$r_{ft} = -\ln \beta - \frac{\gamma^2}{2} V_t (\varepsilon_{t+1}). \hspace{1cm} (10)$$

The last term of Eq. (10) captures the precautionary savings motive, $-\frac{\gamma^2}{2} V_t (\varepsilon_{t+1})$, which varies with perceived risk. Eqs. (9) and (10) generate a key prediction of risk-centric theories of the business cycle: when perceived risk is high, the price of risky assets is low, the precautionary savings motive is strong, and the real risk-free rate is low. This implies that in the data we expect both the real risk-free rate and PV_{S_t} to decrease with perceived risk.

II.A.5 Real Investment

Real investment is determined by Eq. (6) – each firm invests up to the point where the expected return on a marginal unit of investment equals the return required by investors to compensate for the risk of the investment. Our results up to this point have not relied on a specific functional form for the adjustment cost function ϕ. To derive investment in closed form, we assume that adjustment costs are quadratic as is common in the literature (e.g., Liu et al. (2009)): $\phi \left(\frac{I_t}{K_a} \right) = \frac{I_t}{K_a} + \frac{1}{2} \left(\frac{I_t}{K_a} \right)^2$.

We define the log investment-to-capital ratio of firm i as $\text{inv}_{it} = \ln \left(1 + \frac{I_t}{K_a} \right)$. Firm i’s investment-to-capital ratio then equals:

$$\text{inv}_{it} = \ln \beta - \gamma \left(s_i - \frac{\gamma}{2} \right) V_t (\varepsilon_{t+1}). \hspace{1cm} (11)$$
Eq. (11) shows that investment decreases with perceived risk $\nabla_1 (\epsilon_{t+1})$ provided that the firm is risky ($s_i > \frac{\gamma}{2}$). The relationship is stronger for riskier firms. Intuitively, the cost of capital of risky firms is more sensitive to fluctuations in perceived risk, so their investment responses are stronger.

II.A.6 Equilibrium Summary

The following proposition summarizes the equilibrium.

Proposition 1. There is a unique equilibrium in which the real risk-free rate satisfies (10), expected returns on firm i satisfy (6), and firm i’s investment is given by (11).

We next consider how the economy reacts following a positive macroeconomic shock by computing comparative statics with respect to log consumption growth ϵ_t. We work in the neighborhood of $\epsilon_t = 0$ to simplify the expressions so they do not depend on ϵ_t.

Proposition 2. Suppose we have two types of firms H and L with $s_H > s_L > \frac{\gamma}{2}$. In the neighborhood of $\epsilon_t = 0$, following a positive shock:

a) Perceptions of risk fall: $\frac{d\nabla_1(\epsilon_{t+1})}{d\epsilon_t} = -\exp(a)b < 0$.

b) $PV_{S_{tmodel}}$ rises: $\frac{dPV_{S_{tmodel}}}{d\epsilon_t} = \gamma(s_H - s_L)\exp(a)b > 0$

c) Expected returns of high-volatility firms fall relative to low-volatility firms: $\frac{d(\ln E_t[R_{Ht+1}]-\ln E_t[R_{Lt+1}])}{d\epsilon_t} = -\gamma(s_H - s_L)\exp(a)b < 0$.

d) The risk-free rate increases: $\frac{dr_{ft}}{d\epsilon_t} = \frac{1}{2}\gamma^2 \exp(a)b > 0$.

e) Aggregate investment increases: $\frac{d(\frac{1}{2}(inv_{Ht}+inv_{Lt}))}{d\epsilon_t} = \frac{\gamma}{2} (s_H + s_L - \gamma)\exp(a)b > 0$.

f) The investment of volatile firms rises more: $\frac{d(inv_{Ht} - inv_{Lt})}{d\epsilon_t} = \gamma(s_H - s_L)\exp(a)b > 0$.

II.B Risk-Centric Business Cycles: Empirical Implications

The comparative statics in Proposition 2 flesh out the main components of risk-centric theories of the business cycle. Following a positive fundamental shock, investor perceptions of risk fall (Proposition 2a). $PV_{S_{tmodel}}$ rises because perceived risk disproportionately affects the valuations of risky firms (Proposition 2b). High valuations mean that the cost of capital is low for risky firms going forward (Proposition 2c). At the same time, the risk-free rate rises because precautionary savings motives decline (Proposition 2d). Aggregate investment increases through a standard Q-
theory channel, and the effect is strongest for the riskiest firms because their valuations are most affected by perceived risk (Propositions 2e and 2f).

The model predicts that a number of equilibrium relationships should be present in the data.9

1. PV_S_t should be low when investor risk perceptions are high.

2. The real risk-free rate and PV_S_t should be positively correlated.

3. Low values of PV_S_t and the real rate should both forecast high returns on high-volatility stocks relative to low-volatility stocks.

4. High values of PV_S_t should be accompanied by an expansion in aggregate investment.

5. PV_S_t should rise and investor risk perceptions should fall following good news about fundamentals. If investors’ risk perceptions are rational, subsequent revisions in expected risk should not be forecastable.

In the model, we hold risk aversion constant and assume that only perceptions of risk vary over time. While our empirical analysis supports the assumed link between PV_S_t and perceived risk, we cannot rule out that some changes in PV_S_t reflect changes in risk aversion. As Proposition 2 shows, changes in risk aversion would have similar macroeconomic implications to changes in perceived risk. It is therefore important to verify in the data the model prediction that PV_S_t moves with direct measures of perceived risk, as we do in Section II.D.

II.C Construction of Key Variables and Summary Statistics

Having spelled out the central elements of risk-centric theories of the business cycle, we now explore whether these economic linkages appear in the data. We start by summarizing the construction of our key variables. Details regarding our data construction are provided in the internet appendix. Unless otherwise noted, our sample runs from 1970q2, when survey data on inflation expectations begins, to 2016q2.

9Our analysis emphasizes fluctuations in stock markets, bonds markets, and the real economy, rather than unconditional properties of prices and economic activity. We do not address longstanding issues in finance like the equity premium puzzle or the low-volatility anomaly.
Valuation Ratios The valuation ratios used in the paper derive from the CRSP-Compustat merged database and include all U.S. common equities that are traded on the NYSE, AMEX, or NASDAQ. At the end of each quarter and for each individual stock, we form book-to-market ratios. We assume that accounting information for each firm is known with a one-quarter lag. At the end of each quarter, we use the trailing six-month average of market capitalization when computing the book-to-market ratio of a given firm. The six-month average is chosen to match the lag of the accounting data. In the internet appendix, we explore many variants on this procedure and always obtain similar results.

Volatility-Sorted Portfolio Construction We use daily CRSP data from the previous two months to compute equity volatility, excluding firms that do not have at least 20 observations over this time frame. At the end of each quarter, we sort firms into quintiles based on their volatility. The valuation ratio for a quintile is the equal-weighted average of the valuation ratios of stocks in that quintile. Quarterly realized returns in a given quintile are computed in an analogous fashion. The key variable in our empirical analysis is PV_{S_t}, the difference between the average book-to-market ratio of stocks in the lowest volatility quintile and the average book-to-market ratio of stocks in the highest volatility quintile:

$$PV_{S_t} = \left(\frac{B}{M}\right)_{low\ vol,t} - \left(\frac{B}{M}\right)_{high\ vol,t}. \quad (12)$$

PV_{S_t} stands for the “price of volatile stocks.” When market valuations are high, book-to-market ratios are low. Thus, PV_{S_t} is high when the price of high-volatility stocks is high relative to low-volatility stocks. Throughout the analysis, we standardize PV_{S_t} so that regression coefficients correspond to a one-standard deviation change in PV_{S_t}.

Our empirical measure follows from the model, with one modification. In the model, there is for simplicity only one macroeconomic shock that impacts all firms. Exposure to this single shock, i.e., market beta, is the way to measure a stock’s risk in the model. In practice, however, investors likely care about many risk factors. Rather than taking a stand on what these factors are, we empirically proxy for a stock’s risk with the volatility of its past returns. Volatility increases with exposure to any risk factor, and thus is a simple, robust measure of risk. We obtain qualitatively
similar but weaker results if we use risk measures tied to specific models like the CAPM.

The Real Rate The real rate is the one-year Treasury bill yield net of survey expectations of one-year inflation (the GDP deflator) from the Survey of Professional Forecasters. Our focus is on cyclical fluctuations in the real rate, as opposed to low-frequency movements that are potentially driven by secular changes in growth expectations or demographic trends. To control for long-run trends as simply and transparently as possible, we use a linear trend to extract the cyclical component of the real rate. In the internet appendix, we show that all of our results are essentially unchanged if we use the raw real rate or employ more sophisticated filtering methods.

Summary Statistics Table I presents summary statistics. On average, \(PVS_t \) is negative: high-volatility stocks typically have lower valuations than low-volatility stocks.\(^{10}\) The standard deviation of \(PVS_t \) is about twice the magnitude of its mean, so there is substantial variation in the price of volatile stocks over time. This variation is the focus of our empirical work.

[Table I about here]

II.D PVS and Perceptions of Risk

We begin our empirical analysis by confirming that movements in \(PVS_t \) are indeed tied to shifts in investor perceptions of risk. We study how \(PVS_t \) relates to measures of expectations of risk based on analyst forecasts, option prices, surveys of businesses and loan officers, newspaper articles (Baker et al. (2016)), and statistical models. The results are reported in Table II, which contains two sets of regressions. In the first set, we run simple univariate regressions relating \(PVS_t \) to our measures of expected risk. To verify that \(PVS_t \) reflects expected risk rather than expected growth, our second set of regressions controls for cash flow expectations. All variables are standardized to

\(^{10}\)While high-volatility stocks have lower valuations than low-volatility stocks, they also have lower excess returns. This is related to the well-known idiosyncratic volatility and low beta puzzles, which highlight that stocks with high risk have historically underperformed (Ang et al. (2009)), potentially due to short sales constraints (Stambaugh et al. (2015)) or lottery preference (Barberis and Huang (2008)). In contrast, our model implies that volatile firms should unconditionally earn higher returns. One way to address this limitation would be to add a force that increases the demand for volatile securities on average, but leaves room for time variation in their valuations. For instance, investor demand for volatile stocks might be the sum of demand in a frictionless model like ours plus a constant frictional demand due to leverage constraints as in Frazzini and Pedersen (2014). The frictional demand component would tend to weaken the unconditional relationship between risk and return, while the frictionless component generates the time variation of interest for our analysis.
In rows (1)-(4), we relate PV_S_t to measures of perceived risk that match its construction, quantifying the perceived risk of high-volatility firms relative to low-volatility firms. As we argue in Section V, the perceived risk of high-volatility public firms is likely to be relevant for the macroeconomy because they have similar investment behavior to private firms and private firms are a large part of the macroeconomy.

Row (1) of Table II examines how PV_S_t relates to a measure of expected risk derived from the Thompson Reuters IBES dataset of equity analyst forecasts. Specifically, we measure expected earnings risk as the range of analyst forecasts for each firm’s earnings divided by the median forecast.\footnote{We would ideally measure analysts’ expectations of risk using their perceptions of the full distribution of future earnings. However, analysts only report their mean estimate of future earnings in the IBES data. While across-analyst dispersion is an imperfect measure of expected risk, we only need it to be positively correlated with true subjective expectations of risk. Bachmann et al. (2013) show empirically that analyst dispersion is a good proxy for expected risk.} We then define the expected risk of the volatility-sorted portfolio as the difference in median dispersion between high- and low-volatility firms. In row (1), we examine the dispersion in forecasts of one-year ahead earnings. PV_S_t is low when the expected risk of volatile firms based on analyst forecasts is high.\footnote{Since dispersion is sometimes used as a measure of investor disagreement, it is important to note that disagreement should drive up stock valuations (Harrison and Kreps (1978); Scheinkman and Xiong (2003); Diether et al. (2002)). In contrast, we find that the price of volatile stocks declines with the dispersion of analyst forecasts about volatile stocks, consistent with dispersion capturing expectations of risk.} A one-standard deviation increase in expected risk is associated with a 0.67 standard deviation decline in PV_S_t. The univariate R^2 in the regression is 61%. Panel A of Figure I depicts the relationship graphically.

Row (2) shows that PV_S_t is also correlated with dispersion in forecasts of one-quarter ahead earnings. The univariate R^2 is 28%, and a one-standard deviation increase in expected risk from analyst forecasts is associated with a 0.46 standard deviation decline in PV_S_t.\footnote{The primary reason PV_S_t is more strongly correlated with expected risk measured from one-year ahead forecasts than one-quarter ahead forecasts is data availability. The one-year forecast field is better populated in IBES so it is less noisy in the early sample. For the period when the one-quarter measure is relatively well populated, we obtain similar results for the two measures.}

Row (3) studies how PV_S_t relates to expectations of risk derived from option prices. Using data from OptionMetrics, we compute the difference in the median implied volatility of one-year at-the-money options for high- and low-volatility firms. When the option-implied volatility of volatile
firms is relatively high, PVS_t is relatively low. A one-standard deviation increase in expected risk is associated with a 0.47 standard deviation decline in PVS_t.

Option-implied volatilities contain expectations of future volatility and premia for volatility risk (Bollerslev et al. (2009)). If these risk premia are zero or constant, then options provide a clean measure of expected future volatility. If they vary over time, on the other hand, they could bias the relation between PVS_t and implied volatilities. However, risk premia cannot account for our results on analyst forecasts, providing some comfort that movements in PVS_t reflect changing expectations of risk. Moreover, to the extent that risk premia in options are driven by forces orthogonal to those that drive PVS_t (e.g., supply and demand imbalances specific to option markets (Gârleanu et al. (2009)), they will act as measurement error and bias us against finding a link between PVS_t and option-implied volatilities. Taken together, our results suggest that PVS_t moves with investors’ expectations of risk, as predicted by the model.

[Figure I about here]

In row (4) of Table II, we take a statistical approach to measuring the expected risk of the portfolio underlying PVS_t. We examine the forecasted difference in return volatility between the low- and high-volatility portfolios, which we forecast with an AR(1) model. We refer to this measure as an objective measure of risk because it derives from a statistical model. Row (4) indicates that PVS_t correlates with this objective measure of expected risk, though the R^2 of 9% is lower than that for the subjective measures of expected risk we study.

In rows (5)-(9), we show that PVS_t moves with broader measures of perceived risk relevant for the macroeconomy. In row (5), instead of taking the difference in analyst dispersion between high and low-volatility firms, we average analyst dispersion across all firms. Thus, this measure is high when expected risk rises for all firms. The negative point estimates in row (5) indicate that PVS_t is high when the perceived risk of all public firms is low; rows (1) and (2) imply that high-volatility firms are particularly perceived to be safer than usual at these times.\footnote{We argue below that low-volatility firms are “bond-like” and relatively insensitive to fluctuations in perceived risk. Consistent with this interpretation, in untabulated results we find that analyst dispersion for the lowest volatility quintile is not correlated with PVS_t, while dispersion for quintiles 2-5 is.}

In row (6), we use the Federal Reserve Board’s Senior Loan Officer Opinion Survey (SLOOS) to study risk perceptions from credit markets. Row (6) shows that PVS_t is high when loan officers report that they are loosening lending standards, presumably because they perceive risk to be
low. A one-standard deviation loosening in lending standards is associated with a 0.51 standard deviation higher value of PVS_t. Panel B of Figure 1 shows the relation visually. Our interpretation that PVS_t reflects expected risk is further corroborated by row (7), which shows that PVS_t is high when loan officers cite a “more favorable or less uncertain economic outlook” as the reason for loosening lending standards. Row (8) shows that PVS_t is positively correlated with small business optimism about economic conditions, measured using survey data from the National Federation of Independent Business (NFIB). Row (9) shows PVS_t is negatively correlated with the Baker et al. (2016) measure of economic policy uncertainty. These results are consistent with the idea that PVS_t captures a broad notion of perceived risk that operates simultaneously in many asset classes and is relevant for the macroeconomy.

One concern with these results is that expectations of risk may comove with expectations of the future cash flows. In particular, expected risk could be high when expected cash flows are low, confounding our interpretation of PVS_t as a measure of perceived risk. In the second set of regressions in Table II, we control for expectations of cash flows using analyst long-term growth forecasts from IBES. Across specifications, the same overall conclusion emerges: controlling for cash flow expectations has little impact on the relationship with expected risk and typically adds little to the overall R^2. In the internet appendix, we use univariate regressions to show directly that expectations of cash flows have a low correlation with PVS_t.

The takeaway from this analysis is that PVS_t closely tracks perceptions of risk, validating our use of PVS_t as a measure of perceived risk. The connection between PVS_t and expected risk is strongest when using subjective measures from surveys or market data rather than objective measures from statistical forecasting models. In the internet appendix, we relate PVS_t to additional measures of aggregate macroeconomic and stock market risk. These additional results further support the conclusion that PVS_t is related to expected risk, and that this connection is most evident for subjective measures of risk. For the remainder of the paper, we use PVS_t to measure perceived risk because PVS_t is more closely tied to firms’ cost of capital and is available over a longer sample than the direct measures examined here.
III The Price of Volatile Stocks and the Macroeconomy

In this section, we empirically assess risk-centric theories of the business cycle using PVS_t as a measure of perceived risk. We explore links between PVS_t, real interest rates, volatile firms’ cost of capital, and real outcomes. We find that when PVS_t is high, the price of safe bonds is low, so the real rate is high. In addition, we use return forecasting regressions to show that PVS_t and the real rate are both high when the cost of capital is low for risky firms. Turning to the real economy, we document that high values of PVS_t forecast a boom in real investment, an expansion of output, and an increase in aggregate employment with peak responses after four to six quarters. These patterns are consistent with the predictions of our model of risk-centric business cycles in Section II.A.

III.A Real Rates

We begin by documenting the relationship between the detrended one-year real rate and PVS_t, running regressions of the form:

$$\text{Real Rate}_t = a + b \cdot PVS_t + \epsilon_t.$$ \hspace{1cm} (13)

To facilitate interpretation, we standardize PVS_t so regression coefficients correspond to a one-standard deviation move. We report Newey and West (1987) standard errors using five lags. In the internet appendix, we consider several other methods for dealing with persistence, including parametric corrections to standard errors, generalized least squares, and bootstrapping p-values. Our conclusions are robust to these alternatives.

[Table III about here]

Column (1) of Table III shows that the real rate is positively correlated with PVS_t. In other words, safe asset prices are low when the price of volatile stocks is high. The relation is economically large and precisely measured. A one-standard deviation increase in PVS_t is associated with a 1.3 percentage point increase in the real rate. For reference, the standard deviation of the detrended real rate is 2.0 percentage points. The R^2 of the univariate regression is 41%.

Figure II presents the relation between PVS_t and the real rate visually. The plot shows that the fitted value from the regression in Eq. (13), labeled “Price of Volatile Stocks (Scaled),” tracks the
real rate well since 1970. The relation holds in expansions and recessions (shown in gray), as well as in both high- and low-inflation periods. We present formal evidence of subsample stability in the internet appendix.

[Figure II about here]

Column (2) of Table III indicates that our focus on the cross section of stock valuations is critical. We find no relationship between the book-to-market ratio of the aggregate stock market and the real rate. This non-result is not due to statistical precision. The economic magnitude of the point estimate on the aggregate book-to-market ratio is quite small – a one-standard deviation movement in the aggregate book-to-market ratio is associated with only a 0.17 percentage point movement in the real rate. Moreover, the coefficient on PVS_t remains unchanged when we add the aggregate book-to-market ratio.

The finding that the aggregate market is only weakly correlated with the real rate, previously documented in Campbell and Ammer (1993), might initially appear surprising in the light of our model. Our stylized model includes only one aggregate risk factor and would therefore appear to imply that the aggregate market should move with the real rate. One way to reconcile the model with the data would be to assume that low-volatility firms are bond-like in the sense that they are relatively insensitive to risk perceptions: $s_L \approx \frac{\gamma}{2}$ or even $s_L < \frac{\gamma}{2}$. If the public stock market tends to overweight these bond-like firms relative to the aggregate economy, this would dampen the response of the aggregate stock market to risk perceptions, while strengthening the response of PVS_t. Column (3) of Table III shows that low-volatility stocks do appear to be more bond-like: their market values tend to rise when the real rate falls. We revisit the distinction between PVS_t and the aggregate market in Section V.

In column (4), we control for variables traditionally thought to enter into monetary policy: four-quarter inflation, as measured by the GDP price deflator, and the output gap from the Congressional Budget Office (Clarida et al. (1999); Taylor (1993)). Both coefficients are noisily estimated and statistically indistinguishable from the traditional Taylor (1993) monetary policy rule values of 0.5. The internet appendix provides further evidence that our baseline result is not driven by inflation and does not simply capture the component of monetary policy that is attributable to a standard

15 As we discuss further in the internet appendix, the aggregate book-to-market ratio does enter significantly in some variants of our baseline specification. However, the statistical significance is irregular across specifications, and the economic significance is always negligible.

Columns (5)-(8) of Table III rerun the preceding regressions in first differences to ensure that our statistical inference is not distorted by the persistence of either the real rate or PVST. We obtain similar results. We again find no relationship between the real rate and the aggregate book-to-market ratio. Overall, the evidence in Table III indicates an economically meaningful and robust relationship between the real rate and financial market risk perceptions.

III.A.1 Robustness

The relationship between the real rate and PVST is our first key result. Our preferred interpretation is that both the price of volatile stocks and the natural, or frictionless, real risk-free rate respond to changes in perceived risk. We next show two types of robustness, showing that (i) other measures of financial conditions do not have the same properties as PVST and (ii) the relationship between PVST and the real rate is not driven by discretionary monetary policy. In the internet appendix, we run a variety of robustness checks showing that volatility is the key characteristic in the cross section for the relationship between stock prices and the real rate. These tests help us rule out that the PVST-real rate relationship captures the pricing of these alternative characteristics, including leverage, growth, and the duration of cash flows.

We now show that the correlation of PVST with the real rate is distinctive compared to other measures of financial market conditions, including the BAA minus 10-year Treasury credit spread, the Gilchrist and Zakrajšek (2012) credit spread, the Greenwood and Hanson (2013) measure of credit market sentiment, the Baker and Wurgler (2006) measure of equity market sentiment, the Kelly and Pruitt (2013) optimal forecast of aggregate equity market returns, and the Baker et al. (2016) economic policy uncertainty index.

The first set of columns in Table IV Panel A shows that PVST is correlated with many of these measures, though the R^2s indicate that the magnitudes are generally not large. The second set of columns in Panel A of Table IV runs univariate regressions of the real rate on the alternative measures. None of these measures is as correlated with the real rate as PVST, though the Baker and Wurgler (2006) measure is highly correlated with the real rate. Moreover, the third set of columns shows that the relationship between PVST and the real rate remains strong when controlling for these alternative measures and that the R^2s increase substantially when adding PVST in all cases.
Overall, these results suggest that PVS_t contains information on risk perceptions beyond these alternative measures.

One reason that PVS_t measures risk perceptions well is that it is based on a long-short portfolio, and thus nets out factors affecting an entire asset class. For instance, suppose equity market sentiment has a perceived risk component and an equity cash flow component, while credit market sentiment shares the same perceived risk component but has a distinct bond cash flow component. PVS_t should difference out optimism about aggregate equity cash flows, which affects equity market sentiment, but not credit market sentiment. Consistent with this logic, PVS_t is positively correlated with both the Greenwood and Hanson (2013) measure of credit market sentiment and the Baker and Wurgler (2006) measure of equity market sentiment, despite the fact that the two sentiment measures are negatively correlated.

[Table IV about here]

III.A.2 Monetary Policy

We next rule out the possibility that discretionary monetary policy acts as an omitted variable driving both PVS_t and the real risk-free rate. To formalize this concern, consider an extension of the model presented in Section II.A in which the central bank sets short-term real interest rates. This extension could be microfounded by adding price-setting frictions to the model (Woodford (2003)). In such a model, the key predictions outlined in Section II.A apply to the unobservable “natural” real rate r_{fi} and the “natural” rate of economic activity.\(^{16}\) By contrast, our empirical analysis relies on the observable interest rate set by the central bank, which we denote r_{Mfi}.

The basic prescription for optimal monetary policy when the natural real rate varies is simple. Clarida et al. (1999) and Woodford (2003) show that a central bank seeking to stabilize prices will lower the actual interest rate one-for-one when the natural real rate declines.\(^{17}\) If the central bank deviates from this prescription and adjusts the actual interest rate less than one-for-one – perhaps

\(^{16}\)It is important to note that the natural real rate and natural rate of output do not necessarily reflect the economy’s long-run equilibrium, but instead represent the hypothetical values that would obtain in a world without sticky product prices. Modeling the price-setting frictions needed to ensure that the central bank can affect the real risk-free rate would unnecessarily complicate our analysis and is beyond the scope of this paper.

\(^{17}\)We do not require that the Federal Reserve reacts directly to PVS_t, only that perceived risk is reflected in both Fed actions and the price of volatile stocks. For a comprehensive narrative account of financial market considerations in Fed meetings, see Cieslak and Vissing-Jorgensen (2018).
because it seeks to smooth nominal rates – output and investment will temporarily rise above their natural levels. Thus, in the canonical New Keynesian framework, monetary policy is expansionary when \(r_{M}^{ft} \) is below the natural real rate and contractionary when it is above. We can therefore write the observed interest rate as a sum of the natural rate and discretionary monetary policy:

\[
r_{M}^{ft} = r_{ft} + u_{t},
\]

(14)

where the discretionary monetary policy term \(u_{t} \) absorbs any deviations of the actual real rate from the natural rate.\(^{18}\)

Eq. (14) implies that the covariance between the observed real rate and \(PV S_{t} \) consists of two terms:

\[
\text{Cov}[r_{M}^{ft}, PV S_{t}] = \text{Cov}[r_{ft}, PV S_{t}] + \text{Cov}[u_{t}, PV S_{t}].
\]

(15)

The model predicts \(\text{Cov}[r_{ft}, PV S_{t}] > 0 \). Our empirics in Table III necessarily use the observed interest rate \(r_{M}^{ft} \) rather than the natural real rate \(r_{ft} \), so we need to rule out the possibility that the positive covariance in Table III is driven by discretionary monetary policy, \(u_{t} \).

Following the literature on identified monetary policy shocks, we rule out this potential bias using narrow windows around the Federal Reserve’s announcements of monetary policy decisions. The identifying assumption is that no information other than discretionary monetary policy is released in these narrow windows. Under this assumption, we can regress the returns of the low-minus-high volatility portfolio underlying \(PV S_{t} \) on identified monetary policy shocks to test whether discretionary monetary policy causes a shift in the relative price of volatile stocks. If discretionary monetary policy were an omitted variable driving the positive empirical covariance between \(PV S_{t} \) and \(r_{M}^{ft} \), we would expect to obtain a negative coefficient in this regression. For robustness, we use several approaches to identifying monetary shocks, drawing on Romer and Romer (2004), Bernanke and Kuttner (2005), Gorodnichenko and Weber (2016), and Nakamura and Steinsson (2018).

The results in Table IV Panel B indicate that discretionary monetary policy does not differentially impact the price of high-volatility stocks relative to low-volatility stocks. The first set of

\(^{18}\)For examples of such deviations, see e.g., Woodford (2003); Coibion and Gorodnichenko (2012); Stein and Sunderam (2018).
columns regress returns of the low-minus-high volatility portfolio on monetary policy surprises using quarterly data. The estimated point estimates are not statistically distinguishable from zero and have inconsistent signs. In the second set of columns, we narrow the window and focus on daily data. We again find small and statistically insignificant effects. In all of these regressions, we exclude monetary policy changes that occur outside of regularly scheduled meetings because such changes are often made in response to financial market conditions. In the internet appendix, we obtain similar results when including monetary policy surprises from unscheduled meetings. Overall, these results suggest that $\text{Cov}[u_t, PVS_t]$ is zero and support our interpretation that PVS_t and the natural real rate comove because both respond changes in perceived risk.

III.B Return Predictability

We have established that real interest rates and PVS_t are positively correlated in the data. In other words, safe bond prices are high when perceptions of risk as measured by PVS_t are also high. We next document that the correlation between the real rate and PVS_t is attributable to movements in the cost of capital for volatile firms. We use forecasting regressions to show that both the real rate and PVS_t are low when the expected return (i.e., the cost of capital) for volatile stocks is high. This finding is consistent with the core mechanism in risk-centric theories of the business cycle.

Standard present value logic (Campbell and Shiller (1988); Vuolteenaho (2002)) implies that variation in PVS_t must correspond to changes in either the future returns on a portfolio that is long low-volatility stocks and short high-volatility stocks (i.e., the portfolio underlying PVS_t) or the future cash flow growth of the same portfolio. Thus, our findings in Table III imply that the real rate covaries with either future returns or future cash flow growth for volatile stocks.

We run forecasting regressions to show that PVS_t and the real rate comove with expected future returns for volatile stocks:

$$R_{t \rightarrow t+4} = a + b \cdot X_t + \xi_{t+4}, \quad (16)$$

where X_t is either PVS_t or the real rate. To start, $R_{t \rightarrow t+4}$ is the annual return of a portfolio that is long the lowest volatility quintile of stocks and short the highest volatility quintile of stocks, so a high forecasted $R_{t \rightarrow t+4}$ corresponds to a low cost of capital for volatile firms. Table V contains the results. We use Hodrick (1992) standard errors to be maximally conservative in dealing with
overlapping returns.

Column (1) shows that a high price of volatile stocks forecasts low returns on high-volatility stocks relative to low-volatility stocks. A one-standard deviation increase in PVS_t forecasts a 15.1 percentage point higher annual return on the volatility-sorted portfolio. The annualized standard deviation of returns is 29.6% (Table I reports the standard deviation of quarterly returns). The R^2 of 0.26 is also large. For comparison, the aggregate price-dividend ratio forecasts aggregate annual stock returns with an R^2 of 0.09 (Cochrane (2011)). Thus, it appears that variation in PVS_t largely reflects variation in expected future returns, consistent with much of the empirical asset pricing literature (e.g., Cochrane (2011)). The model in Section II.A assumes that firms are sufficiently risky that an increase in risk perceptions raises firms’ cost of capital despite lowering the real risk-free rate. The quantitatively large variation in the cost of capital that we find here validates this important model assumption.

Column (2) makes the connection between the real rate and expected returns on the volatility-sorted portfolio. A one-standard deviation increase in the real rate forecasts an 8.1 percentage point higher annual return on the volatility-sorted portfolio. When the real rate is high, high-volatility stocks tend to do poorly relative to low-volatility stocks going forward. In other words, the cost of capital for volatile firms is relatively low.

In the internet appendix, we further show that PVS_t forecasts returns on volatile securities in other asset classes, including U.S. corporate bonds, sovereign bonds, options, and credit default swaps. Thus, PVS_t captures common variation in the compensation investors demand for holding volatile securities within several different asset classes, consistent with the idea that it is a broad measure of risk perceptions relevant to the macroeconomy.

In columns (3) and (4), $R_{t \rightarrow t+4}$ is the cash flow of the volatility-sorted portfolio, measured as accounting return on equity (ROE). We find economically small and statistically insignificant effects forecasting ROE with either PVS_t or the real rate. PVS_t and the real rate contain little information about the future cash flows of the volatility-sorted portfolio.

Taken together, columns (1)-(4) of Table V suggest that the real rate comoves with PVS_t because it comoves with the cost of capital for volatile stocks. In the internet appendix, we use the present value decomposition of Vuolteenaho (2002) to show that nearly 90% of the comovement...
between the real rate and PV_S_t can be attributed to the real rate’s forecasting power for returns on volatile stocks. Consistent with our model’s predictions, when perceived risk is high, safe asset prices are high and investors demand high compensation for holding volatile stocks.

Columns (5) and (6) of Table V show that neither the real rate nor PV_S_t forecast the aggregate market excess return, echoing earlier findings by Campbell and Ammer (1993). This again highlights the importance of our focus on the cross section of stocks.

III.C Real Outcomes

In risk-centric theories of the business cycle, changes in risk perceptions have real effects: when perceptions of risk are high, risky firms invest less because their cost of capital is high. In the previous subsection, we showed that when perceived risk as measured by PV_S_t is high, volatile firms do face a high cost of capital. We now explore whether this high cost of capital has real effects.

To do so, we trace out the response of different macroeconomic quantities to PV_S_t using local projections similar to Jordà (2005). We run regressions of the form:

\[y_{t+h} = a + b^h_Y \times X_t + b^h_{RR} \times \text{RealRate}_t + b^h_{\text{y}} \times y_t + \varepsilon_{t+h} \]

where \(h \) is the forecast horizon and \(X_t \) is either \(PV_S_t \) or the aggregate book-to-market ratio.

[Table VI about here]

Table VI reports the results. In columns (1)-(4), we forecast the ratio of private nonresidential investment to capital. A one-standard deviation increase in PV_S_t is associated with an investment-capital ratio that is 0.22 percentage points higher at a one-quarter horizon. The magnitude is 0.36 percentage points at a four-quarter horizon. The standard deviation of the investment-capital ratio is 1.16%, so these magnitudes are economically meaningful. In the internet appendix, we also show that the investment rates of high-volatility firms are more sensitive to PV_S_t than the investment rates of low-volatility firms, consistent with the model in Section II.A. Columns (5)-(8) of Table VI report results for the output gap. A one-standard deviation increase in PV_S_t is associated with an output gap that is 0.29 percentage points more positive after one quarter, and 0.59 percentage points higher after four quarters. In columns (9)-(12) of the table, we report results
for the change in the unemployment rate. A one-standard deviation increase in PVS_t is associated with a 0.11 percentage point fall in the unemployment rate after one quarter, and a 0.27 percentage point decline after four quarters.

[Figure III about here]

In Figure III we depict these results visually, reporting impulse responses to a one-standard deviation increase in PVS_t for horizons of $h = 1, \ldots, 12$ quarters. The figure shows that an increase in PVS_t forecasts a persistent increase in private investment, peaking around six quarters and then slowly reverting over the next six quarters. Forecasts for the output gap and unemployment are somewhat less persistent, peaking after five quarters and then dissipating. In the internet appendix, we complement these results with standard vector autoregression (VAR) evidence. These VARs allow us to quantify the importance of PVS_t shocks using forecast error variance decompositions. At a ten-quarter horizon, PVS_t shocks account for 14% of variation in the unemployment rate and 39% of the variation in investment-to-capital ratios. For comparison, monetary policy shocks account for 17% of variation in unemployment and only 5% of variation in the investment-to-capital ratio.

For comparison, Table VI also reports results using the aggregate book-to-market ratio instead of PVS_t in the local projections. The aggregate book-to-market ratio does not have economically or statistically meaningful forecasting power for future investment and employment. The point estimates show that the responses of investment and employment to PVS_t are two to five times stronger (in absolute value) than their responses to the aggregate book-to-market ratio, depending on horizon. We do find some evidence that the output gap rises following an increase in the value of the aggregate stock market. However, the relation between PVS_t and future macroeconomic activity is more robust across different macroeconomic aggregates. In the internet appendix, we show that the relationship between PVS_t and future economic outcomes remains when controlling for the aggregate book-to-market ratio, the Gilchrist and Zakrajšek (2012) credit spread, and the Cochrane and Piazzesi (2005) interest rate term-structure factor, suggesting that PVS_t contains information about the macroeconomy that is distinct from the information in these variables.

One might be concerned that Figure III suggests that PVS_t reflects variation in expected growth rather than risk perceptions. For instance, more volatile stocks could have cash flows that are more sensitive to aggregate growth. This alternative explanation is unlikely for a few reasons. For one,
we find no evidence that PVS_t forecasts the cash flows of volatile stocks, while it strongly forecasts their future returns. In addition, if aggregate growth expectations were important, aggregate stock market valuations should forecast real investment more strongly. We therefore believe that the most natural interpretation of our results is that PVS_t captures risk perceptions, which in turn drive the natural rate and real economic outcomes.

IV Why Do Perceptions of Risk Vary?

We have documented relationships between PVS_t, the real rate, and macroeconomic outcomes that are consistent with risk-centric theories of the business cycle. When our measure indicates that perceived risk is high, the price of safe bonds is high, the cost of capital for volatile firms is high, and output and investment are forecast to contract. In this section, we use PVS_t to investigate why perceptions of risk vary over time. We first show that expectations of risk fall on the heels of good news about the economy. We then provide evidence that investors over-extrapolate in the sense that expectations of risk are predictably revised upwards after periods of low perceived risk.

IV.A PVS and Macroeconomic News

Early articulations of risk-centric theories of the business cycle (e.g., Keynes (1937), Minsky (1977), and Kindleberger (1978)) posited that investors expectations of risk are shaped by recent events: following good news, investors expect future risk to be low. In Table VII, we examine this prediction in the data by regressing the 4-quarter change in PVS_t onto measures of macroeconomic news. We standardize all variables to aid interpretation.

[Table VII about here]

Column (1) shows a positive correlation between the 4-quarter change in PVS_t and the surprise in real GDP growth relative to survey expectations from the Survey of Professional Forecasters over the same period. A one-standard deviation higher real GDP growth surprise is associated with a 0.6 standard deviation increase in PVS_t. Column (2) reveals similar results for surprises in corporate profit growth. A one-standard deviation increase in the corporate profit growth surprise is associated with a 0.4 standard deviation increase in PVS_t. At the firm level, column (3) shows that PVS_t comoves with the difference in contemporaneous cash flow growth (ROE) between low-
and high-volatility firms. Finally, column (4) shows that PVS_t moves with recent conditions in credit markets, consistent with the idea that PVS_t is a measure that extends beyond equity markets. We measure credit market conditions as the change in charge-off rates on bank loans over the next four quarters. A one-standard deviation increase in charge-offs is associated with a 0.6 standard deviation decrease in PVS_t. Column (5) shows that in a multivariate regression all four of these explanatory variables appear to contain independent information.

Overall, the results here show that perceived risk falls on the heels of good news about the state of the economy. This finding is consistent with the evidence that realized volatility is countercyclical (Bloom (2014)), and that risk perceptions priced in options are linked to past realized volatility (Bollerslev et al. (2009)). In the internet appendix, we also directly show that measures of realized and expected risk fall following good macroeconomic news, consistent with the assumptions of our model.

IV.B PVS Forecasts Revisions in Expected Risk

We next examine whether the fluctuations in perceived risk we document are justified by economic fundamentals. In other words, are expectations of risk rational, as assumed in the model in Section II.A? If expectations of risk over-extrapolate from recent events, as proposed by Keynes (1937) and Minsky (1977), then our results in Section III suggest that irrational perceptions of risk amplify business cycle fluctuations.

If expectations are fully rational, two conditions should hold. First, revisions in expectations should be unpredictable because they should only occur in response to purely unpredictable news events (Coibion and Gorodnichenko (2015)). Second, forecast errors – the difference between the realized outcome and forecasted outcome – should be unpredictable. All information available should be incorporated in the time-t expectation, so no information available at time t should correlate with forecast errors. To test these predictions, we construct several different measures of revisions in expectations and forecast errors. We then try to forecast them with PVS_t. For each measure, we first build a firm-level measure and then aggregate up to the portfolio level by taking the median of high-volatility firms minus the median of low-volatility firms. The internet appendix contains more information on the variable construction for this analysis and shows that PVS_t does
not forecast expectations of cash flows.

[Table VIII about here]

In row (1) of Table VIII, we examine revisions in expectations of risk based on analyst forecasts. We ask how expectations of the risk of quarterly earnings at quarter \(t + 3 \) are revised between quarters \(t \) and \(t + 2 \). Row (1) shows that high values of \(PVS_t \) forecast an upward revision in expected risk over the next two quarters. Intuitively, when \(PVS_t \) is high, analyst expectations of risk are low, and analysts are likely to revise their views of risk upwards. This suggests that there are times when investors underestimate risk and therefore overvalue volatile stocks. Eventually, investors realize their mistake and revise their expectations of risk upward. Conversely, the results suggest that when \(PVS_t \) is low, investors overestimate risk, underprice volatile stocks, and eventually revise their expectations of risk downwards.

In row (2), we study revisions to the risk expectations embedded in stock options. We examine revisions from quarter \(t \) to \(t + 3 \) in the expected volatility of stock returns that will be realized between \(t + 3 \) and \(t + 4 \). The forecasting regression shows that a one-standard deviation increase in \(PVS_t \) is associated with a revision in future expected risk that is 0.46 standard deviations higher. Thus, like analyst forecasts, option prices suggest that when \(PVS_t \) is high and expected risk is low, expected risk tends to be revised upwards. As discussed before, option-implied volatilities contain both investor expectations of risk and volatility risk premia, so the results in row (2) could reflect the ability of \(PVS_t \) to forecast changes in future volatility risk premia. However, this would not account for the predictability of analyst-based revisions.

The loan officer survey variable is not associated with a fixed future date, so we cannot construct true revisions in expectations of risk based on it. We can only examine the measure’s mean reversion over time. Row (3) shows that the percentage of banks loosening lending standards tends to fall after periods of high \(PVS_t \). In untabulated results, we control for unconditional mean reversion in the survey variable by including its level in the regression, and find that the relationship with

\begin{footnotesize}
\footnotetext{19}{We infer expectations of volatility using implied option volatilities from OptionsMetrics. By the law of total variance, the implied volatility at time \(t \) contains both the time \(t \) expectation of volatility at \(t + 3 \) and the time-\(t \) variance of expected returns at \(t + 3 \). In the internet appendix, we show \(PVS_t \) forecasts revisions in the expectation of volatility, not the variance of expected returns. Ideally, we would use variance swaps, which isolate expectations of future volatility, rather than options, but variance swaps are not broadly available for individual stocks.}

\footnotetext{20}{Moreover, Dew-Becker et al. (2017) find that, on average, volatility risk is not priced for horizons beyond one quarter. Their evidence therefore suggests that volatility risk premia in options are not a relevant for the 3-4 quarter option maturities we consider.}
\end{footnotesize}
PVSt remains unchanged. In other words, even controlling for its unconditional mean reversion, the percentage of banks loosening lending standards tends to fall after periods of high PVSt.

Finally, rows (4) and (5) of the table provide an indication of what might cause revisions in expected risk. PVSt forecasts rising realized volatility for both the aggregate market and the volatility-sorted portfolio over the subsequent four quarters. In other words, realized risk increases just as investors revise their expectations of risk upwards. The fact that PVSt forecasts increases in realized risk is consistent with mean reversion in objective risk, as assumed in our model in Section II.A; however, if expectations of risk were fully rational, investors should anticipate this mean reversion and revisions in risk perceptions should not be predictable. Taken together, the evidence in Table VIII therefore suggests that investors’ risk perceptions over-extrapolate from objective variation in risk.

In Table IX, we use options data to examine forecast errors in risk expectations at the firm level. Specifically, we define the volatility forecast error as the realized volatility of stock returns between \(t + k \) to \(t + h \) minus the expected volatility of those returns implied by options prices at quarter \(t \). We then predict these errors using PVSt and allow the forecasting relationship to vary based on the stock’s volatility quintile. Formally, we run:

\[
\text{Realized Volatility}_{i}(t+k,t+h) - \text{IV}_{i,t}(t+k,t+h) = a + b_{PVSt} \times PVSt + \sum_{q=2}^{5} b_{q, PVSt} \times 1_{q} \times PVSt + \epsilon_{i,t+h}.
\]

where \(\text{IV}_{i,t}(t+k,t+h) \) is the implied volatility of firm \(i \)'s returns from \(t + k \) to \(t + h \), measured at \(t \).

[Table IX about here]

The table shows that forecast errors are larger when PVSt is high, particularly for high-volatility stocks. The effect is economically significant. The standard deviation of the one-year forecast error examined in columns (1) and (2) is 19%. A one-standard deviation increase in PVSt is associated with an increase in the forecast error of 3% for low-volatility stocks and 5-6% for high-volatility stocks. Column (2) shows that we obtain similar results if we include industry-time fixed effects, which purge the regression of any volatility risk premia that are constant within an industry at a given point in time. In columns (3) and (4) we examine forecast errors for the volatility of stock returns between quarters \(t + 3 \) to \(t + 4 \) and find even stronger results. The standard deviation of the forecast error is 27%. A one-standard deviation increase in PVSt is associated with an increase in
the forecast error of 4.7% for low-volatility stocks and 10-12% for high-volatility stocks. These results are consistent with the idea that investors underestimate risk when PV_S_t is high, particularly for volatile stocks.

In the internet appendix, we take a complementary approach, studying the profitability of strategies that sell put options. The return to such strategies depends directly on the accuracy of investors’ expectations of risk. We show that high values of PV_S_t forecast lower returns to selling put options on high-volatility stocks than low-volatility stocks. Under rational expectations, riskier strategies should always have higher expected returns, so this result suggests when PV_S_t is high investors underestimate risk.

Taken together, these results on forecast revisions and forecast errors suggest that expectations of risk are not fully rational. Combined with our finding that PV_S_t is more correlated with subjective than objective measures of risk, the evidence points towards a violation of rational expectations.

V Discussion

We have documented that the data support a model of risk-centric business cycles along multiple dimensions. In particular, we have shown that PV_S_t is low when direct measures of perceived risk are high. Further, we have found a negative correlation between the prices of safe bonds and perceived risk, as measured by PV_S_t. As in risk-centric theories of the business cycle, this correlation reflects changes in expected returns that occur simultaneously across many asset markets. Moreover, risk perceptions appear to be linked to the macroeconomy in the data. We find risk perceptions, as measured by PV_S_t, decrease on the heels of good macroeconomic news, and that a decrease in perceived risk forecasts a boom in output and investment.

However, we have also documented some empirical patterns that our simple motivating model does not capture. First, the model assumes that investors have rational expectations of risk, yet the evidence in Section IV.B suggests that investors overreact to recent news when forming expectations of future risk. In the internet appendix, we show how to accommodate these findings in the model by loosening the assumption of rational expectations and instead assuming that investors have diagnostic expectations as in Bordalo et al. (2018). This modification implies that investors
over-extrapolate from recent news, which amplifies the baseline relationships between PVS_t, real interest rates, and investment in the model. It also allows the model to generate the pattern of overreaction and subsequent reversal in subjective expectations of risk that we observe in the data.

Second, the model suggests that the aggregate stock market should have many of the same properties as PVS_t, while empirically the strong comovement between PVS_t, the real rate, and future economic activity distinguishes our measure from the aggregate market. The model and data can be reconciled by noting that private firms are responsible for a substantial portion of aggregate real investment. Private firms make up roughly 50% of aggregate non-residential fixed investment, 70% of private-sector employment, 60% of sales, and 50% of pre-tax profits (Davis et al. (2007); Asker et al. (2014); Zwick and Mahon (2017)).

Crucially, high-volatility public firms appear to be a better proxy for private firms than low-volatility public firms. We find that aggregate investment is significantly more correlated with the investment of high-volatility public firms than with the investment of low-volatility public firms. The correlation of aggregate investment with high-volatility public firms’ investment is 79%, while the correlation for low-volatility public firms is only 35%, indicating that the investment of public high-volatility firms is highly correlated with the investment of private firms. In the internet appendix, we show that like private firms, high-volatility public firms are smaller, less profitable, and invest more than low-volatility public firms. Taken together, these results suggest that PVS_t measures risk perceptions relevant for real investments across the economy, not just for the particular set of publicly-listed companies that enter the construction of our variable.

In the language of the model, we can express these results as follows. The aggregate stock market is dominated by large, low-volatility public firms that are relatively safe. For these bond-like firms, we have $s_L \approx \frac{\gamma}{2}$, so low-volatility firms’ valuations and investment are relatively insensitive to perceived risk. This implies that the aggregate stock market does not fluctuate much in response to changes in risk perceptions. In contrast, both high-volatility public firms and private firms are relatively risky and have $s_H > \frac{\gamma}{2}$. This has two implications. First, the valuation of high-volatility public firms (i.e., PVS_t) fluctuates strongly in response to changes in perceived risk, making it a good measure of risk perceptions. Second, the investment of both high-volatility public firms and private firms – and hence aggregate macroeconomic investment – is sensitive to perceived risk.
VI Conclusion

This paper proposes a new measure of risk perceptions relevant to the macroeconomy, PV_{St}. Our measure is based on the idea that when investors perceive risk to be high, they are only willing to pay low prices for volatile assets. Using PV_{St}, we present empirical evidence that supports classic narratives of economic booms and busts emphasizing financial market conditions. Our measure indicates that investors’ expectations of risk fall on the heels of positive macroeconomic news. When perceived risk, as measured by PV_{St}, is high real risk-free rates are low, the cost of capital for risky firms is high, and real investment is forecast to decline.

Our findings suggest that subjective expectations of risk may not be fully rational. Given the link between risk perceptions and the broader economy, future work measuring the risk perceptions of individual actors in the economy, such as investors or firm managers, and studying how their perceptions of risk affect real economic decisions is likely to be fruitful.

University of Chicago and NBER
Harvard Business School
Harvard Business School and NBER
References

Table I: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Real Rate</td>
<td>1.86</td>
<td>2.30</td>
<td>2.18</td>
<td>-1.86</td>
<td>8.72</td>
</tr>
<tr>
<td>Detrended Real Rate</td>
<td>0.00</td>
<td>1.96</td>
<td>-0.21</td>
<td>-4.62</td>
<td>5.81</td>
</tr>
<tr>
<td>PVS (not standardized)</td>
<td>-0.18</td>
<td>0.37</td>
<td>-0.12</td>
<td>-1.72</td>
<td>0.64</td>
</tr>
<tr>
<td>Low-Minus-High Vol Return</td>
<td>0.68</td>
<td>14.78</td>
<td>2.37</td>
<td>-49.51</td>
<td>50.48</td>
</tr>
</tbody>
</table>

Notes: This table presents summary statistics. PVS_t is the difference between the average book-to-market (BM) ratio of low-volatility stocks and the average BM-ratio of high-volatility stocks. The low-minus-high-volatility return is the return to an equal-weighted portfolio long the lowest-volatility quintile of stocks and short the highest-volatility quintile. Returns are quarterly. The real rate is the one-year Treasury bill rate net of one-year survey expectations of inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in annualized percentage points. We detrend the real rate using a linear trend. Data is quarterly and runs from 1970Q2 through 2016Q2.
Table II: PVS and Perceptions of Risk

<table>
<thead>
<tr>
<th>X-variable</th>
<th>(PV S_t = a + b \times X_t)</th>
<th>(PV S_t = a + b \times X_t + c \times E_t [LTG])</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(N)</td>
<td>(b)</td>
</tr>
<tr>
<td>High-Minus-Low Volatility Stocks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Analyst (\sigma_t (\text{EPS}_{t+5}))</td>
<td>110</td>
<td>-0.67</td>
</tr>
<tr>
<td>(2) Analyst (\sigma_t (\text{EPS}_{t+1}))</td>
<td>110</td>
<td>-0.46</td>
</tr>
<tr>
<td>(3) Option-Implied (\sigma_t^{IV} (\text{Ret}_{t+4}))</td>
<td>80</td>
<td>-0.47</td>
</tr>
<tr>
<td>(4) Objective (\sigma_t (\text{Ret}_{t+1}))</td>
<td>184</td>
<td>-0.31</td>
</tr>
<tr>
<td>(5) All-Firms: Analyst (\sigma_t (\text{EPS}_{t+5}))</td>
<td>110</td>
<td>-0.72</td>
</tr>
<tr>
<td>(6) % Banks Loosening</td>
<td>105</td>
<td>0.51</td>
</tr>
<tr>
<td>(7) % Banks Loosening b/c of Outlook</td>
<td>90</td>
<td>0.48</td>
</tr>
<tr>
<td>(8) Small Business Optimism</td>
<td>170</td>
<td>0.49</td>
</tr>
<tr>
<td>(9) Baker et al. (2016) Policy Uncertainty</td>
<td>126</td>
<td>-0.41</td>
</tr>
</tbody>
</table>

Notes: This table shows contemporaneous regressions of \(PV S_t \) on measures of investor risk perceptions. For each firm \(i \) and date \(t \), we proxy for the time-\(t \) expected volatility of earnings-per-share (EPS) at time \(t + h \), denoted \(\sigma_t (\text{EPS}_{t+h}) \), using the range of analyst EPS forecasts divided by the absolute value of the median analyst EPS forecast. At the portfolio level, \(\sigma_t (\text{EPS}_{t+h}) \) is the cross-sectional median for high-volatility stocks minus the median for low-volatility stocks. \(\sigma_t (\text{EPS}_{t+h}) \) in row (1) uses annual EPS forecasts. \(\sigma_t (\text{EPS}_{t+1}) \) uses one-quarter ahead quarterly EPS forecasts. The variable Option-Implied \(\sigma_t^{IV} (\text{Ret}_{t+4}) \) in row (3) is the median at-the-money one-year implied volatility of high-volatility firms minus the median for low-volatility firms. In row (4), we use a statistical model to forecast the average volatility of high-volatility stocks minus low-volatility stocks. Denote the average realized quarterly volatility of high-volatility firms at time \(t \) by \(\text{rv}_{H,t} \) and the same quantity for low-volatility firms by \(\text{rv}_{L,t} \). We fit an AR(1) model to \(\text{rv}_{H,t} - \text{rv}_{L,t} \) and use the time-\(t \) expectation of \(\text{rv}_{H,t+1} - \text{rv}_{L,t+1} \) from the AR(1) model to form Objective \(\sigma_t (\text{Ret}_{t+1}) \). Row (5) is based on the analyst dispersion measure from row (1), but we average across all of the volatility-sorted portfolios instead of taking the difference between high- and low-volatility firms. Row (6) uses the net percentage of U.S. banks loosening lending standards and row (7) uses the net percentage of U.S. banks loosening lending standards due to "more favorable or less uncertain conditions", both taken from the Federal Reserve Senior Loan Officer Opinion Survey (SLOOS). Row (8) uses the NFIB Small Business Optimism index. Row (9) uses the Baker et al. (2016) economic policy uncertainty index. \(PV S_t \) is the average book-to-market ratio of low-minus-high-volatility stocks. The first set of regressions in the table are univariate regressions of \(PV S_t \) on the measures of expected risk. In the second set of regressions, we include IBES analyst expectations of long-term growth for the high-minus-low volatility portfolio \((E_t [LTG]) \), as described in Table A.15 of the internet appendix. Newey-West (1987) standard errors with five lags are reported. Data is quarterly, and sample periods depend on data availability. The full sample for \(PV S_t \) spans 1970Q2 to 2016Q2. All variables are standardized to have a mean of zero and variance one.
Table III: The Real Rate and PVS

<table>
<thead>
<tr>
<th>Dep. Variable:</th>
<th>One-Year Real Rate</th>
<th>First-Differences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Levels</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>PVS</td>
<td>1.26**</td>
<td>1.26**</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.25)</td>
</tr>
<tr>
<td>BM Low-Vol</td>
<td>0.83**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td></td>
</tr>
<tr>
<td>BM High-Vol</td>
<td>-1.53**</td>
<td>-0.42**</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
<td>(0.15)</td>
</tr>
<tr>
<td>Aggregate BM</td>
<td>-0.17</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.37)</td>
</tr>
<tr>
<td>Output Gap</td>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.12)</td>
</tr>
<tr>
<td>Inflation</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.13)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.22)</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.41</td>
<td>0.41</td>
</tr>
<tr>
<td>N</td>
<td>185</td>
<td>185</td>
</tr>
</tbody>
</table>

Notes: This table reports regressions of the one-year real rate on PVS_t. PVS_t is defined as the difference in BM ratios between the bottom and top quintile portfolios. Aggregate BM is computed by summing book equity values across all firms and dividing by the corresponding sum of market equity values. Aggregate BM and PVS_t are standardized, and we standardize separately for the levels and first differences regressions. The output gap is the percentage deviation of real GDP from the CBO’s estimate of potential real GDP. Inflation is the annualized four-quarter percentage growth in the GDP price deflator. The real rate is the one-year Treasury bill rate net of one-year survey expectations of inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage points and linearly detrended. We also independently detrend the output gap, inflation, and the aggregate book-to-market ratio. Newey-West (1987) standard errors with five lags are reported. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is quarterly and spans 1970Q2-2016Q2.
Table IV: Robustness

Panel A: Other Measures of Financial Conditions

<table>
<thead>
<tr>
<th>Z-variable</th>
<th>$PVS_t = a + b \times Z_t$</th>
<th>RealRate$_t = a + c \times Z_t$</th>
<th>RealRate$_t = a + c \times Z_t + d \times PVS_t$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>b</td>
<td>$se(b)$</td>
</tr>
<tr>
<td>(1) BAA-10Y Spread</td>
<td>185</td>
<td>-0.43</td>
<td>0.13</td>
</tr>
<tr>
<td>(2) GZ Spread</td>
<td>151</td>
<td>-0.52</td>
<td>0.13</td>
</tr>
<tr>
<td>(3) Credit Sentiment</td>
<td>133</td>
<td>0.36</td>
<td>0.11</td>
</tr>
<tr>
<td>(4) Equity Sentiment</td>
<td>182</td>
<td>0.49</td>
<td>0.14</td>
</tr>
<tr>
<td>(5) $E_t [\text{Mkt-Rf}_{t,t+4}]$</td>
<td>180</td>
<td>-0.27</td>
<td>0.21</td>
</tr>
<tr>
<td>(6) Policy Uncertainty</td>
<td>126</td>
<td>-0.41</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Notes: This table compares other measures of financial conditions to PVS_t, the average book-to-market ratio of low-minus-high volatility stocks. The first set of results shows univariate regressions of PVS_t on each alternative financial market measure. The second set of results shows univariate regressions of the real rate on each alternative measure. The last set of results regresses the real rate on both PVS_t and each alternative measure. In all regressions, we standardized both PVS_t and the other measures of financial market conditions. The real rate is the one-year Treasury bill rate net of one-year survey expectations of inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage points and linearly detrended. In rows (1)-(4), the alternative variables are the spread between Moody’s BAA corporate bond yields and the 10-year Treasury yield, the credit spread index from Gilchrist and Zakrjalek (2012), credit market sentiment from Greenwood and Hanson (2013) (four-quarter moving average), and equity market sentiment (orthogonalized) from Baker and Wurgler (2006), respectively. In row (5), we use the procedure in Kelly and Pruitt (2013) to form the statistically optimal linear forecast of one-year ahead excess stock market returns. Row (6) uses the Baker et al. (2016) economic policy uncertainty index. Newey-West (1987) standard errors with five lags are reported. Data is quarterly, and the sample spans 1970Q2-2016Q2.
Table IV: Robustness

Panel B: Volatility-Sorted Returns and Monetary Policy Surprises

Low-High Vol Ret\(_{t\rightarrow t+1}\) = \(a + b \times\) MP Shock\(_{t\rightarrow t+1}\) + \(\varepsilon_{t\rightarrow t+1}\)

<table>
<thead>
<tr>
<th>MP Shock</th>
<th>Quarterly Data</th>
<th>Daily Data</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b)</td>
<td>(se(b))</td>
<td>(b)</td>
</tr>
<tr>
<td>Romer and Romer (2004)</td>
<td>0.71</td>
<td>1.55</td>
<td>0.27</td>
</tr>
<tr>
<td>Bernanke and Kuttner (2005)</td>
<td>-1.65</td>
<td>21.2</td>
<td>-1.08</td>
</tr>
<tr>
<td>Gorodnichenko and Weber (2016)</td>
<td>1.60</td>
<td>52.6</td>
<td>3.67</td>
</tr>
<tr>
<td>Nakamura and Steinsson (2018)</td>
<td>12.83</td>
<td>58.1</td>
<td>5.29</td>
</tr>
</tbody>
</table>

Notes: This table reports regressions of volatility-sorted returns onto monetary policy shocks. Volatility-sorted returns are returns on the lowest minus highest volatility quintile portfolios. Quarterly return regressions aggregate daily monetary policy shocks by summing over all shocks within a quarter. The Romer and Romer (2004) shock is the change in the intended federal funds rate inferred from narrative records around monetary policy meetings, after controlling for changes in the Federal Reserve’s information. The Bernanke and Kuttner (2005) shock is derived from the price change in federal funds future contracts relative to the day before the policy action. The Gorodnichenko and Weber (2016) shock is derived from the price change in federal funds futures from 10 minutes before to 20 minutes after a FOMC press release. The Nakamura and Steinsson (2018) shock is the unanticipated change in the first principal component of interest rates with maturity up to one year from 10 minutes before to 20 minutes after a FOMC news announcement. Starting in 1994, we consider only policy changes that occurred at regularly scheduled FOMC meetings. Prior to 1994, policy changes were not announced after meetings so the distinction between scheduled and unscheduled meetings is not material. Robust standard errors are reported.
Table V: PV$_S_t$, the Real Rate, and Future Returns

<table>
<thead>
<tr>
<th>Volatility-Sorted Portfolio (Low-High)</th>
<th>Ret$_{t\rightarrow t+4}$</th>
<th>ROE$_{t\rightarrow t+4}$</th>
<th>VW-Mkt − Rf$_{t\rightarrow t+4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>PV$_S_t$</td>
<td>15.15**</td>
<td>-1.36</td>
<td>-2.37</td>
</tr>
<tr>
<td></td>
<td>(3.67)</td>
<td>(0.96)</td>
<td>(2.56)</td>
</tr>
<tr>
<td>Real Rate$_t$</td>
<td>4.13**</td>
<td>0.48</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(1.94)</td>
<td>(0.50)</td>
<td>(1.13)</td>
</tr>
<tr>
<td>Constant</td>
<td>2.40</td>
<td>2.49</td>
<td>6.98**</td>
</tr>
<tr>
<td></td>
<td>(4.00)</td>
<td>(4.19)</td>
<td>(2.54)</td>
</tr>
<tr>
<td>Adj. R^2</td>
<td>0.26</td>
<td>0.07</td>
<td>0.02</td>
</tr>
<tr>
<td>N</td>
<td>181</td>
<td>181</td>
<td>181</td>
</tr>
</tbody>
</table>

Notes: This table reports return forecasting regressions where the predictor variables are either the real interest rate or PV$_S_t$, the average book-to-market ratio of low-minus-high volatility stocks. We standardize PV$_S_t$ to have mean zero and variance one for the full sample. The real rate is the one-year Treasury bill rate net of one-year survey expectations of inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage points and linearly detrended. The columns listed under “Volatility-Sorted Portfolio (Low-High)” consider an equal-weighted portfolio that is long low-volatility stocks and short high-volatility stocks. Ret$_{t\rightarrow t+4}$ is the realized stock market return between t and $t+4$ for this portfolio. ROE$_{t\rightarrow t+4}$ is the accounting return on equity between t and $t+4$ for the portfolio, which we compute following Cohen, Polk, and Vuolteenaho (2003). VW-Mkt − Rf is the excess return of the CRSP Value-Weighted index obtained from Ken French’s website. All returns are expressed in percentage points. Hodrick (1992) standard errors are reported for columns (1), (2), (5), and (6); Newey West (1987) standard errors with five lags are used in columns (3) and (4). * indicates a p-value of less than 0.1, and ** indicates a p-value of less than 0.05. Data is quarterly and spans 1970Q2-2016Q2.
Table VI: PVS and Real Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Investment-to-Capital</th>
<th>Output Gap</th>
<th>△Unemployment Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$h = 1$</td>
<td>$h = 4$</td>
<td>$h = 1$</td>
</tr>
<tr>
<td>PVS_t</td>
<td>0.22** (0.05)</td>
<td>0.36** (0.10)</td>
<td>0.29** (0.09)</td>
</tr>
<tr>
<td>Agg. B/M$_t$</td>
<td>-0.09 (0.05)</td>
<td>-0.16 (0.11)</td>
<td>-0.22** (0.10)</td>
</tr>
</tbody>
</table>

Notes: This table reports the results of Jordà (2005) local projections. We run regressions of the following form:

\[y_{t+h} = a + b_X^h \times X_t + b_{BB}^h \times \text{Real Rate}_t + b_y^h \times y_{t-1} + \varepsilon_{t+h} \]

where X_t is either PVS_t or the aggregate book-to-market ratio (Agg B/M). The table reports the estimation results for b_X^h. PVS_t is the average book-to-market ratio of low-minus-high volatility stocks and is standardized. The aggregate book-to-market ratio is linearly detrended, then standardized. The real rate is the one-year Treasury bill rate net of one-year survey expectations of inflation (the GDP deflator) from the Survey of Professional Forecasters, expressed in percentage points and linearly detrended. We consider three different macroeconomic outcomes for the y-variable. The first is the investment-capital ratio, defined as the level of real private nonresidential fixed investment (PNFI) divided by the previous year’s current-cost net stock of fixed private nonresidential assets (KINTOTL1ES000). The second is the real output gap, defined as the deviation of real GDP from real potential output. Lastly, we consider is the change in the U.S. unemployment rate. When forecasting the investment-capital ratio, y_{t+h} is the level of the investment-capital ratio at time $t+h$. For the output gap, y_{t+h} is the level of the output gap at time $t+h$. Finally, for the unemployment rate, y_{t+h} is the change in the unemployment rate between t and $t+h$, and y_{t-1} is the change between $t-1$ and t. All macroeconomic variables are expressed in percentage points. Newey-West (1987) standard errors with five lags are reported. * indicates a p-value of less than 0.1 and ** indicates a p-value of less than 0.05. Data is quarterly and spans 1970Q2-2016Q2.
Table VII: PVS and Good News

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>$\Delta_4 PVS_t$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real GDP Surprise$_{t-4 \rightarrow t}$</td>
<td>0.56**</td>
<td>0.24**</td>
<td>(0.14)</td>
<td>(0.09)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corporate Profit Surprise$_{t-4 \rightarrow t}$</td>
<td>0.43**</td>
<td>0.23**</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LMH-Vol ROE$_{t-4 \rightarrow t}$</td>
<td>-0.27**</td>
<td>-0.19**</td>
<td>(0.08)</td>
<td>(0.05)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ_4 Bank Net Chargeoffs$_{t \rightarrow t+4}$</td>
<td>-0.61**</td>
<td>-0.45**</td>
<td>(0.12)</td>
<td>(0.05)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adj. R^2
N
181
181
181
158
158

Notes: This table reports univariate regressions of four-quarter changes in PVS_t on: (1) the surprise in real GDP growth, defined as realized real GDP growth from time $t-4$ to t minus the expected annual growth forecast at time $t-4$ made by the Survey of Professional Forecasters; (2) the surprise in corporate profit growth, defined as realized corporate profit growth from time $t-4$ to t minus the expected annual growth forecast at time $t-4$ made by the Survey of Professional Forecasters; (3) the trailing annual ROE of the low-minus-high volatility portfolio; and (4) the four-quarter change in bank net chargeoff rate, taken from bank Call Reports. PVS_t is the average book-to-market ratio of low-minus-high volatility stocks. The operator $\Delta_4 Z_t$ denotes $Z_t - Z_{t-4}$ for variable Z. In each regression, we include a constant and standardize all variables. Newey-West (1987) standard errors with five lags are reported. Data is quarterly and depends on data availability. The full sample for PVS_t spans 1970Q2 to 2016Q2.
Table VIII: PVS and Revisions in Expectations of Risk

\[Y = a + b \times PVS_t + \varepsilon \]

<table>
<thead>
<tr>
<th></th>
<th>(b)</th>
<th>(se(b))</th>
<th>Adj. (R^2)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Risk:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) (\sigma_{t+2}(EPS_{t+3}) - \sigma_t(EPS_{t+3}))</td>
<td>0.38</td>
<td>0.16</td>
<td>0.10</td>
<td>94</td>
</tr>
<tr>
<td>(2) (\sigma^{IV}{t+3}(Ret{t+4}) - \sigma^{IV}t(Ret{t+4}))</td>
<td>0.46</td>
<td>0.14</td>
<td>0.18</td>
<td>80</td>
</tr>
<tr>
<td>(3) (\Delta_4) Pr. of Banks Loosening_{t+4}</td>
<td>-0.83</td>
<td>0.09</td>
<td>0.53</td>
<td>101</td>
</tr>
<tr>
<td>Realized Risk:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) (\Delta_4 \sigma_{t+4}(Mkt-Rf))</td>
<td>0.21</td>
<td>0.11</td>
<td>0.04</td>
<td>181</td>
</tr>
<tr>
<td>(5) (\Delta_4 \sigma_{t+4}(HML-Vol))</td>
<td>0.35</td>
<td>0.18</td>
<td>0.12</td>
<td>181</td>
</tr>
</tbody>
</table>

Notes: This table uses \(PVS_t \) to forecast future revisions in expected risk. In row (1), we compute revisions in expected earnings-per-share (EPS) volatility using the Thompson Reuters IBES database of analyst forecasts. For each firm \(i \) and date \(t \), we proxy for the time-\(t \) expected EPS volatility at time \(t + 3 \), denoted \(\sigma_t(EPS_{t+3}) \), using the range of analyst annual EPS forecasts divided by the absolute value of the median analyst EPS forecast. For each \((i,t) \), we choose the shortest forecast horizon \(h \) such that the quarterly earnings are at least two fiscal quarters away, which in calendar time is generally between 3 and 4 quarters from date \(t \). For each firm \(i \), we define the revision in expected earnings growth volatility at time as \(\sigma_{t+2}(EPS_{t+3}) - \sigma_t(EPS_{t+3}) \). At the portfolio level, \(\sigma_{-2}(EPS_{t+3}) - \sigma_t(EPS_{t+3}) \) is the cross-sectional median revision for high-volatility stocks minus the median revision for low-volatility stocks. In row (2), we use option implied volatilities to define revisions in expected return volatility. For each firm \(i \) and date \(t \), denote \(\sigma^{IV}_t(t + 4) \) as the option implied volatility of returns between quarters \((t + 3) \) and \((t + 4) \). The time-\((t + 3) \) revision in expected volatility based on option prices is then \(\sigma^{IV}_t(t + 4) - \sigma^{IV}_t(t + 4) \). We aggregate this option-based measure of revisions to the portfolio level in a similar manner to our IBES-based measure. Options data comes from OptionsMetrics. Row (3) regresses \(\Delta_4 \) Pr. of Banks Loosening_{t+4} on \(PVS_t \), where Prc. of Banks Loosening is the net percent of U.S. banks loosen lending standards from the Federal Reserve Senior Loan Officer Opinion Survey (SLOOS) and \(\Delta_4 \) denotes the four-quarter difference operator. In rows (4) and (5), we instead use \(PVS_t \) to forecast changes in future realized risk, as opposed to changes in expectations of risk. \(\sigma_t(Mkt-Rf) \) is the realized quarterly volatility of the CRSP value-weighted index at time \(t \). \(\sigma_t(HML-Vol) \) is the average volatility of high-volatility stocks at time \(t \) minus the average volatility of low-volatility stocks. \(PVS_t \) is the average book-to-market ratio of low-minus-high- volatility stocks. We include a constant in all regressions and all variables are standardized to have mean zero and unit variance. Newey-West (1987) standard errors with five lags are reported. Data is quarterly and depends on data availability. The full sample for \(PVS_t \) spans 1970Q2 to 2016Q2. See the internet appendix for more details.
Table IX: PVS and Implied Volatility Forecast Errors

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Realized Volatility (t+k, t+h) – IV_t (t+k, t+h)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>k = 0, h = 4</td>
<td>k = 3, h = 4</td>
</tr>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>PVS_t</td>
<td>3.04**</td>
<td>(0.76)</td>
</tr>
<tr>
<td>PVS_t × 1_{it}^{q=2}</td>
<td>0.79**</td>
<td>0.59**</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.23)</td>
</tr>
<tr>
<td>PVS_t × 1_{it}^{q=3}</td>
<td>1.75**</td>
<td>1.41**</td>
</tr>
<tr>
<td></td>
<td>(0.53)</td>
<td>(0.42)</td>
</tr>
<tr>
<td>PVS_t × 1_{it}^{q=4}</td>
<td>2.78**</td>
<td>2.70**</td>
</tr>
<tr>
<td></td>
<td>(1.01)</td>
<td>(0.78)</td>
</tr>
<tr>
<td>PVS_t × 1_{it}^{q=5}</td>
<td>2.19</td>
<td>2.12*</td>
</tr>
<tr>
<td></td>
<td>(1.69)</td>
<td>(1.15)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FE (industry × t)</th>
<th>R²</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>38,135</td>
<td>38,010</td>
</tr>
<tr>
<td>0.08</td>
<td>37,811</td>
<td>37,687</td>
</tr>
</tbody>
</table>

Notes: This table uses PVS_t to predict errors in volatility forecasts from firm-level options. For each firm i, we define the error in volatility forecasts in options as the realized volatility in stock returns between t+k and t+h, minus the time-t option implied volatility for returns over the same horizon. For k = 3 and h = 4, we use the term structure of implied volatilities at time t to back out the implied volatility of returns for the horizon t+k to t+h, under the assumption that quarterly returns are not autocorrelated. We then run the following panel regression:

\[
\text{Realized Volatility}_{i}(t+k, t+h) - \text{IV}_t(t+k, t+h) = a + \sum_{q=2}^{5} a_q \cdot 1_{q}^{it} + b_{PVS} \times PVS_t + \sum_{q=2}^{5} b_{q,PVS} \cdot 1_{q}^{it} \times PVS_t + \epsilon_{it}
\]

where \(1_{q}^{it}\) is an indicator function for whether firm \(i\) is in volatility-quintile \(q\) at time \(t\). PVS is average book-to-market ratio of low-minus-high volatility stocks and in all regressions is standardized to have mean zero and variance one for the period 1970q2-2016q2, the period of our main analysis for most of the paper. We use all firms in the CRSP-OptionMetrics merged database. The row FE indicates whether a fixed effect was included in the regression, where industries are defined using the 30 industry definitions from Ken French’s website. Standard errors are clustered by firm and quarter. * indicates a \(p\)-value of less than 0.1 and ** indicates a \(p\)-value of less than 0.05. The full sample runs from 1996Q1-2016Q2. The size of the subsamples that include fixed effects do not match their full-sample counterparts because we drop fixed-effect groups of size one.
Figure I: PVS_t and Expected Risk

Panel A: Analyst Expected Risk

Panel B: Bank Lending Standards

Notes: Panel A plots PVS_t against analyst expected risk of high-volatility stocks relative to low-volatility stocks. PVS_t is the difference between the average book-to-market (BM) ratio of low-volatility stocks and the average BM-ratio of high-volatility stocks. We construct analyst expected risk at the firm-level based on the dispersion of analyst forecasts from Thompson Reuters IBES data, defined as the range of analyst forecasts of one-year ahead annual earnings divided by the average forecast of earnings. The analyst expected risk of stocks in a portfolio is the median of firm-level disagreement for firms in that portfolio. Panel B plots PVS_t against the net percentage of U.S. banks loosening lending standards, taken from the Federal Reserve Senior Loan Officer Opinion Survey (SLOOS). Data is quarterly, and the sample size depends on availability.
Figure II: One-Year Real Rate and PVS

Notes: This figure plots the one-year real rate and the fitted value from a regression of the real rate on PVS_t. PVS_t is the difference between the average book-to-market (BM) ratio of low-volatility stocks and the average BM-ratio of high-volatility stocks. The one-year real rate is the one-year Treasury bill rate net of one-year survey expectations of inflation (the GDP deflator) from the Survey of Professional Forecasters, linearly detrended to focus on business-cycle fluctuations. Data is quarterly and spans 1970Q2-2016Q2.
Figure III: Impulse Responses of the Macroeconomy to PVS (Local Projections)

Notes: This figure plots the estimated impulse responses (and associated 95% confidence bands) of several macroeconomic variables to a one-standard deviation increase in PVS, using local projections. We compute impulse responses using Jordà (2005) local projections, running regressions of the following form:

\[y_{t+h} = a + b_h^{PVS} \times PVS_t + b_h^{RR} \times \text{Real Rate}_t + b_h^{y} \times y_{t} + \varepsilon_{t+h}. \]

We consider three different macroeconomic outcomes for the \(y \)-variable. The first is the investment-to-capital ratio, defined as the level of real private nonresidential fixed investment (PNFI) divided by the previous year’s current-cost net stock of fixed private nonresidential assets (KINTOTL1ES000). The second is the real output gap, defined as the percent deviation of real GDP from real potential output. The third is the change in the U.S. civilian unemployment rate. When forecasting the investment-capital ratio, \(y_{t+h} \) is the level of the investment-capital ratio at time \(t+h \). For the output gap, \(y_{t+h} \) is the level of the output gap at time \(t+h \). Finally, for the unemployment rate, \(y_{t+h} \) is the change in the unemployment rate between \(t \) and \(t+h \), and \(y_0 \) is the change between \(t-1 \) and \(t \). For all regressions, we use Newey and West (1987) standard errors with five lags. Data is quarterly and spans 1970Q2-2016Q2.