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1 Introduction

The increasing production of laws, regulations and rules over the past decades has been

extensively documented in both the United States and Europe.1 More often than not, new

laws or regulations have built upon and gradually modified existing statutes. Provisions were

added or subtracted in order to respond to technological, economic, or ideological changes.2

In some domains, for instance in tax policy, this process has led over time to high regulatory

complexity.3 In other domains, for instance the regulation of autonomous vehicles, more

regulatory detail is necessary in order to keep up with the changing technologies.4 Yet

in other domains, like financial regulation, successive regulatory changes have historically

resulted in cycles of regulation and deregulation (Dagher, 2018). The policy making process

has led to different reform paths and resulting levels of legislative and regulatory complexity

across policy domains.

In this paper, we model the reform process as a function of the complexity of the envi-

ronment, and we trace the endogenous evolution of complexity as a function of equilibrium

reform incentives. Most legislative and regulatory reform processes involve an offer by a

proposer (an interest group, a specialized agency, or a politician, depending on the context)

and approval by a decision maker (politician, regulator, or institution, depending on the

context). Two aspects fundamental to most reform processes will be the main tenets of our

model: the first tenet is that there is typically asymmetric information between the deci-

sion maker and the proposer. Second, there is history dependence, as reforms are evaluated

within the regulatory environment created by past legislative activity. We show how the

resulting reform process given these central features may lead to different patterns in the

1For instance, in the U.S., the total pages published in the code of Federal Regulations increased from
120.000 in 2000 to over 180.000 in 2019 (“Pages in the Code of Federal Regulations,” Regulatory Studies
Center, George Washington University); similarly, Gratton et al. (2020) document a significant increase in
legislative production in Italy since the early 90s.

2See for instance the discussions in Teles (2013); Kawai et al. (2018), or the process of policy making
described by Lindblom (1959).

3For the U.S. case, see Joint Committee on Taxation (JCX-49-15), “Complexity in the Federal Tax
System,” March 2015.

4Congressional Research Service (R45985), “Issues in Autonomous Vehicle Testing and Deployment,”
February 2020.
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adoption of reforms and in the complexity of the legislative environment.

The asymmetric information between the decision maker and the proposer may manifest

along two main dimensions. It may concern the proposer’s ability in drafting or implementing

a reform (private type asymmetric information) or the consequences of the reform itself, as

a reform’s benefit depends on the realization of some state of the world (common state

asymmetric information). Thus, in general, a decision maker’s relevant beliefs concern both

the proposer’s ability and the state of the world.

As an example of the simultaneous relevance of these two types of asymmetric informa-

tion, consider two possible policy reforms that could be adopted by a government in the

wake of an economic crisis: one is a simple blanket stimulus policy, for instance a universal

tax cut or universal government guarantees for struggling firms; the other is a set of complex

targeted tax credits or guarantees for specific sectors. Typically a government agency or

dedicated task force proposes one of the two, and the executive (or the parliamentary ma-

jority) faces the double information problem we postulate: first, the executive is uncertain

about the agency’s ability to distinguish which firms benefit the most from the stimulus

policy, in order to implement targeted policies (private type);5 second, the executive faces

uncertainty about the nature of the crisis, e.g., whether it is concentrated primarily in a

few sectors or generalized (state of the world). A complex reform is effective if the crisis is

concentrated and the implementing agency is capable of carrying it out. If these conditions

are likely to be met, the executive is expected to adopt a complex proposal. If the crisis is

likely to be generalized, a blanket policy is likely to be effective, and hence the executive

is expected to approve such a proposal. The worst situation for the executive is when the

crisis is likely confined to specific sectors, but the agency is believed to lack the ability to

implement targeted transfers. In this situation, inaction by the executive could be expected.

The second tenet of our proposed framework is that the decision maker’s understanding

of a reform’s desirability depends on the complexity of the policy domain. The decision

5The decision maker’s belief about the agency’s ability should matter more when the reform is a complex
one, like going for selective tax credits. When instead a blanket policy is proposed, there is less room for
discretion, and the agency’s drafting or implementation ability matters much less for the final outcome.
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maker can extract less information about the proposal’s effects when the domain is more

complex, e.g., a reform would interact with many more existing provisions. This complexity

is the consequence of past policy choices, which have resulted in the current legislative

environment. Thus, past reforms affect the evaluation of new reform proposals. To follow on

the above example, implementing selective tax credits means that future responses to crises

have to take into account their differential effects on sectors with and without tax credits.

This complicates the evaluation problem for future executives responding to new crises.

In the model, an informed proposer, with information advantage both about his ability

and about the state of the world, makes a reform proposal to an uninformed decision maker.

Both agents live only one period and are followed in the next period by a new set of agents.

The decision maker would like to adopt a reform that matches the state of the world and

that is implemented by a high ability proposer. The proposer’s objective is to convince the

decision maker to adopt his reform proposal. For example, the proposer can be an interest

group who drafts a reform, and the decision maker is a politician who may adopt or reject

that reform to the legislation. Alternatively, the proposer may be a politician who makes

a reform bill proposal, and the decision maker is the legislature’s majority leader, who can

support or reject the bill. The proposer can be thought of as offering one of two possible

reforms, one that is simpler or one that is more complex: a blanket policy versus a tailored

policy, repealing an existing regulatory provision or writing in a new one, etc. The outcome

of a simple reform depends on the state of the world, while the outcome of a complex reform

depends both on the state of the world and on the ability of the proposer. The decision

maker in turn is endowed with the decision to adopt or reject the reform after evaluating

it. The evaluation produces a noisy public signal about the state of the world. The decision

maker’s approval or rejection has dynamic consequences: if a simpler reform is adopted, then

the legislation also becomes simpler. This means that next period’s policy problem becomes

easier for a future decision maker: evaluating a new reform will deliver a more precise signal.

Similarly, if a more complex reform is adopted, then the legislation becomes more complex.

This makes next period’s evaluation problem more difficult: evaluating a new reform will
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deliver a noisier signal to a future decision maker. If the decision maker rejects the reform,

then the status quo is maintained, and the next period’s evaluation problem will be identical.

We obtain a full characterization of the best perfect Bayesian equilibrium for the decision

maker of each period for every pair of parameters defining the asymmetric information and

for any given level of complexity of the environment. When the proposer is more likely to

be high-ability and the state of the world is more likely to require simplifications, complex

reforms are proposed only by the high-ability proposer and only when the state requires

them. The decision maker therefore receives complex reforms only when they are beneficial.

When the proposer is less likely to be high-ability and the state of the world is expected to

require complexity, a complex reform may be proposed even when the realized state of the

world calls for simplification. This happens because the proposer strategically chooses the

reform that is more likely to be adopted. A decision-maker who expects the state of the world

to require complexity is more likely to adopt a reform in line with her prior. This leads to

increasing legislative complexity even when this is not desirable. This strategy is contingent,

however, on some expected competence on the part of the proposer. If the likelihood of

competence is low, then the decision maker rejects reforms, halting reformism.

Our characterization allows us to compare the equilibrium proposals and adoption de-

cisions under different levels of complexity of the environment. The probability of simple

proposals being offered increases as the environment becomes more complex. With more

complexity, the decision maker’s evaluation of the reform is less precise. The decision maker

therefore relies more on her prior about the desirability of a reform and may favor a simple

reform, the outcome of which does not depend on the proposer’s type. In turn, the pro-

poser might prefer to offer a simple reform over a complex reform, to increase his chance

of approval. While proposals become simpler, the probability that a reform is adopted over

the status quo may increase or decrease as the environment becomes more complex: More

complex reforms generate more(less) reformism when the prior of the decision maker on the

importance of adopting a complex reform is low(high).

Dynamically, there is the possibility of complexity cycles: faced with high complexity,
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the decision maker receives simpler reform proposals that she adopts, and the environment

becomes less complex. But once the decision maker has better information about the state

of the world, more complex reform proposals materialize on the equilibrium path, as the

proposer offers such policies in the state in which they are beneficial. This makes the system

fluctuate around an intermediate level of complexity. The endogenous cycling is driven by

the change in the proposer’s equilibrium strategy as the environment’s complexity changes.

We show that this dynamic has some important features that are unique to the “checks

and balances” nature of our model: in our setting the level of complexity around which

cycling happens decreases in the probability that the proposer is high ability, while in a

situation where a decision maker can freely pick reforms it would increase in the probability

of high proposer ability. In the former case, the proposer responds to the decision maker’s

expectation of higher ability by strategically offering a simpler reform. In the latter case,

the decision maker simply responds to less uncertainty about the state of the world.

Finally, we examine how the two dimensions of asymmetric information affect the ex-

pected long run endogenous complexity of the environment. Expected long run complexity

is path dependent when there is a higher probability that the state of the world favors a

complex reform and that the proposer is low-ability. Otherwise, it is path independent, and

we show when it fluctuates around an intermediate level versus reaching extreme values.

The predictions of the model help to reconcile many different findings in the recent litera-

ture on the relationship between legislative complexity and efficiency: the negative effects of

excessive legislative activism by politicians described in Gratton et al. (2020) are rationalized

in our model by the combination of intermediate valence (mapped to ability in the model) of

politicians in Italy and a large demand for reforms (mapped to high uncertainty about the

state of the world) at the beginning of the Second Republic, leading to unwarranted com-

plexification; on the other hand, when the state of the world is more likely to require complex

reforms, for instance due to technological changes, or when the environment’s complexity

decreases exogenously due to information about similar reforms already adopted elsewhere,

complexification improves efficiency, as shown in Ash et al. (2019).
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The model also adds to the literature of regulatory cycles, where the role of interest

groups as proposers has been widely documented empirically. In this application, we show

how proposer ability can be mapped to alignment of an interest group with the public

interest. Our mechanism points to a novel interpretation for endogenous cycles of regulation

and deregulation, emerging due to the strategic incentives of interest groups that propose

regulatory changes. We show how these endogenous cycles may amplify cycles driven by

exogenous changes in the economic environment.

Finally, the model also has implications for understanding the role played by checks and

balances in democracies: in the absence of vetoing by a decision maker separate from the

proposer, there could be excessive reforms. Moreover, complexity may endogenously evolve

to one extreme or to the other. Separation between decision maker and proposer limits

reformism and can also maintain an intermediate level of complexity.

The paper is organized as follows. Section 2 discusses the related literature, Section 3

presents the model, Section 4 characterizes the equilibrium for any given complexity of the

environment, and Section 5 derives the dynamics of complexity. Section 6 analyzes a number

of applications and Section 7 concludes. All proofs are in the Appendix.

2 Related Literature

Our paper contributes to the literature on reform processes and legislative and regulatory

complexity. The reforms in our model have the general feature of being incremental (Dewa-

tripont and Roland, 1992, 1995; Callander, 2011), in that policy change happens gradually

– a proposer cannot propose something that massively increases or decreases complexity in

one step. Incrementalism emerges endogenously in Kawai et al. (2018), in an evolutionary

model where entanglements and interdependencies among policies make it very difficult to

make grand reforms. Beside justifying incrementalism, entanglements and interdependencies

also create a bias in favor of policy complexity, and in their framework policies that start

complex tend to become ever more complex, whereas simple policies stay simple forever.
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In contrast, our framework does not consider entanglements and each policy domain could

cycle endogenously between simplification and complexification equilibria. Taking reforms

as incremental, we show how the complexity of the status quo, the need for reform, and

the ability of policymakers affect reform adoption and we trace the resulting dynamics of

complexity.

Central to our model is the view that complexity of the environment refers to the diffi-

culty for the decision maker to discern the consequences of a proposed reform. This notion of

complexity is introduced and analyzed in a general model in Asriyan et al. (2020). Here, the

policymaking environment requires adjustment along two dimensions: First, we allow the

consequences of a policy to depend on the state of the world, so that a more complex reform

is not always costlier than a simpler reform; second, the complexity of the environment is

history dependent, determined by the reforms adopted up to the current date. Implicitly, a

more complex reform affects the future complexity of the legislative environment. The evo-

lution of complexity is not an explicit choice of the proposer, and by not making the players

long-lived, we abstract away from learning motives.6 By assuming short-lived agents we also

ignore the additional causes and consequences of complexity due to electoral concerns.7

We focus on the feedback between reform proposals and the complexity of the policymak-

ing environment for future regulators or legislators. This is in line with the type of questions

studied in Gratton et al. (2020), who study the consequences of greater uncertainty (in the

form of political instability) on quantity and quality of legislation and rules. The evolution

of the quantity and quality of rules in turn affects the functioning of the bureaucracy and

politicians’ incentives. Like in their model, we study the dynamic consequences of regulation

decisions, but without focusing on politicians’ signaling incentives vis--vis voters: in our

paper the dynamics of complexity depends on the noise in understanding the consequences

of policies for a decision-maker, without signaling distortions.

Another literature to which our paper contributes is the one on regulatory complexity and

6See Callander (2011) as part of the literature that has focused on learning.
7See Levy et al. (2019) and Morelli et al. (2020) for some insights on the connection between the demand

of populism and the strategic supply of simplistic policy platforms even when perhaps the state of the world
would require a complex strategy.
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lobbying. Our framework maps to a model of informational lobbying, where the proposer is

an industry-level interest group. This approach complements the literature focused on self-

regulation (McCarty, 2017) or on quid-pro-quo lobbying conducted by individual companies.

Finally, the paper relates to the formal literature on checks and balances. Beside the

classic Barro (1973), the closest related articles are Rogers (2003), Tsebelis (1999), and

Gratton and Morelli (2018), who study the optimality of checks and balances under policy

uncertainty when the veto player has the same signaling incentives as the proposer. To

the best of our knowledge our model is the first to focus on the endogenous complexity

consequences for the comparison between systems with and without checks and balances.

3 Model

Consider an environment in which a proposer can propose a reform to a status quo regulation.

The proposal is adopted or rejected by a decision-maker (DM). A reform may either remove

or add a contingency to the regulation. We denote a (simplifying) reform that removes a

contingency by yS, and a (complexifying) reform that adds a contingency by yC .

The benefit to the DM from a reform depends on the state of the world (θ) and on the

type of proposer who drafts it. There are two possible states of the world, θS and θC , the

latter occurring with known probability κ. There are also two proposer types, P ∈ {A,B},

where type A is high-ability and type B is low-ability. The probability of a proposer being

of type A is π. The realized state of the world and proposer type are known to the proposer,

but they are not observable to the DM .

The status quo regulation delivers a benefit normalized to ω = 0 to the DM . Adopting

reform yS adds a positive net benefit v > 0 if the state is θS and a net loss −l < 0 if the

state is θC . The benefit from a proposal yC depends on both the state of the world and on

the type of proposer. If the proposer is of type A, then the DM receives the net benefit v in

state θC , and v−a ≥ 0 in state θS. If the proposal comes from proposer B, the DM receives

the net loss −l in state θC , and −l− a in state θS. Below, we summarize the net gain to the
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DM from each reform proposal, if it is adopted:

yS :

A B

θS v v

θC −l −l

yC :

A B

θS v − a −l − a

θC v −l

Intuitively, a simplifying proposal is good if the state of the world is one where simplification

is needed, and the proposer’s ability shouldn’t matter much for simple blanket policies;

on the other hand, the welfare consequences of more complex policies depend greatly on

the proposer’s ability. Moreover, adopting a complex reform when it is not needed adds

unnecessary compliance costs (a).

The proposer derives a benefit normalized to 1 if his proposal is approved, and 0 otherwise.

Reform Process. We consider the following reform process.

1. Nature chooses a state of the world, θ ∈
{
θS, θC

}
.

2. After observing θ and his type P , the proposer offers a reform proposal, either yS

(simplify) or yC (complexify).

3. The DM receives a private signal ρ ∈ {s, c} about θ, with Pr(ρ = θ) = 1 − z, where

z ∈
[
zmin, 1

2

]
, and zmin > 0.8 The value z is public information.

4. The DM makes decision d to approve (d = 1) or deny (d = 0) the reform.

We assume that both the DM and the proposer live for only one period.9 In the next period,

nature independently draws another DM and another proposer from a pool in which type A

exists with probability π, and the above reform process is repeated each period t ∈ {1, 2, ...}.

8We assume strict inequality because at z = 0 there is no imperfect information about the state of the
world.

9Allowing the DM to live for longer than one period does not fundamentally change the analysis or
the insights we will present below. If the DM takes into account the expected consequences of changing
complexity, we can show that this leads to less complex proposals and more rejections. Details available
upon request.
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Decision-Maker’s Information. In period t, the DM ’s signal ρt ∈ {s, c} comes with

noise zt. A proposal that is approved in period t changes the status quo, and the noise in

the following period is given by

zt+1 =

 min{zt + ∆, 1
2
} after yC is approved,

max{zt −∆, zmin} after yS is approved,
(1)

where ∆ > 0. The noise therefore increases after yC is approved, until the upper bound of

1
2

is reached, at which point the noise is maximal, rendering the signal fully uninformative.

Similarly, the noise decreases after yS is approved, until the lower bound of zmin, at which

the noise is minimal.

Complexity. Complexity in our model has two aspects. First, reform yC is more complex

in that its payoff depends both sources of asymmetric information, the state of the world

and the proposer’s ability, whereas yS only depends on the state of the world. Second,

adopting yC increases noise z next period. Intuitively, a higher z means higher complexity

of the environment, in that understanding the effects of a reform requires more expertise or

a costlier analysis. The proposer can observe θ directly, the underlying assumption being

that he has more expertise on the exact effects of the proposed reform.

Equilibrium Concept

Fixing any initial condition with a given triplet (κ, π, z0), we select the best Pure Strategy

Perfect Bayesian Equilibrium for the DM .10

Definition 1 A pure strategy Perfect Bayesian Equilibrium of the game is defined as a

profile of strategies d : {s, c}×
{
yS, yC

}
×
[
zmin, 1

2

]
→ {0, 1} for the DM and mP :

{
θS, θC

}
×[

zmin, 1
2

]
→ {0, 1} for the proposer, and a system of beliefs µ :

{
yS, yC

}
×
[
zmin, 1

2

]
→ [0, 1]

10 As typical with Perfect Bayesian Equilibria, we obtain multiplicity due to the freedom to set off-path
beliefs. As such, there exist equilibria in which the DM does not approve any proposal, and the status quo
is unchanged. The selection of best PBE for any set of initial conditions is standard.
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for the DM such that (i) the proposer’s strategy mP (θ, z) ≡ Pr(yC |θ, z) is optimal given

DM ’s strategy, (ii) the DM ’s approval strategy d (ρ, y, z) is optimal given her belief, and

(iii) the DM ’s belief µ must be consistent with Bayes’ Rule whenever possible.

Call our selected equilibrium BPBE(κ, π, z). Given our payoff assumptions, it is possible

to obtain multiple equilibria that deliver the same maximal expected welfare for the DM .

In that case, we select among those equilibria the one that minimizes the future noise z,

i.e., between two payoff equivalent actions, one where yS is proposed and one where yC is

proposed, we select the equilibrium with yS, stacking the deck against complexification.

Stable equilibrium Starting from noise z0 in period t = 0, an initial BPBE(κ, π, z0) is

stable if the endogenous evolution of zt for t = {1, 2, ...,∞} never challenges the existence

conditions for that initial BPBE. If BPBE(κ, π, z0) is not stable it means that for some zt

potentially reached at some time t on the equilibrium path dictated by the initial equilibrium

strategies, BPBE(κ, π, zt) does not call for the same best equilibrium strategy profile as

BPBE(κ, π, z0).

4 Equilibrium

To solve for the equilibrium, we first examine the DM ’s approval decision given a proposer’s

strategy. Afterwards, we derive the proposer choice given the DM ’s beliefs. Finally, we

impose consistency between the proposer’s strategies and the DM ’s beliefs.

Benchmark with Observable Types

An essential part of the model is that a reform may be proposed strategically even when the

state of the world does not call for it, leading to changes in complexity driven by strategic

reasons. Hence, the most relevant benchmark is the one where such strategic incentives

are removed, that is, the one where the proposer’s type is observable. In other words, this
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benchmark can be thought of as the baseline checks and balances model without asymmetric

information on ability.

Proposition 1 When the proposer’s type P is observable, in the BPBE:

1. If P = A, the proposer offers yS after θS, and yC after θC; the DM approves with

probability one.

2. If P = B, the proposer offers yS in both states; the DM ’s approval strategy is

d =

1 if κ ≤ v/(v + l)

0 otherwise

. (2)

The DM derives a net benefit from any proposal made by proposer A. Therefore, any

proposal from A is approved. Proposer B only offers a net benefit when he proposes yS and

the state is θS. Thus, the DM approves only if the state is sufficiently likely to be θS.

Proposal yC is adopted and noise increases when P = A and θ = θC . In the long-run,

the expected noise increases to the maximum if this case is more likely than the others, i.e.,

π · κ ≥ 1/2. Otherwise, in the long-run, the expected noise decreases to the minimum, or,

if π = 0 and κ > v/(v + l) the status quo does not change. Thus, the dynamics are trivial,

and fluctuations in noise are driven only by occasional realizations of P = A and θ = θC .

Equilibrium Characterization

Let us now consider the general case in which both information asymmetries exist. We

consider the BPBE given any initial conditions (π, κ, z0). We know that the DM obtains

the highest payoff when she adopts policy yS in state θS and policy yC proposed by A in

state θC . The proposer’s goal is to have his proposal approved, regardless of the state of the

world. Therefore, proposer B has an incentive to choose the reform that will induce the DM

to believe that she is facing proposer A or state θS. Thus, the best outcome for the DM

can be sustained in equilibrium only if the DM ′s belief is that she is likely to face proposer
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A and state θS. Otherwise, the proposer’s equilibrium strategy will differ. The following

Proposition describes the BPBE in each region of the (π, κ) space, for a given z.11

Proposition 2 Given any z ∈
[
zmin, 1/2

]
, there exist thresholds π1(κ, z), π2(κ, z), π3(κ, z)

and κ̄ such that the pure strategy BPBE(κ, π, z) has the following form:

1. (Simplification) If π ≥ π3, proposer A offers yS after θS, and yC after θC; proposer

B offers yS in both states, and the DM approves the proposal:

mA(θ, z) = 1θ=θC ;mB(θ, z) = 0; d(ρ, y, z) = 1. (3)

2. (Matching) If π ∈ [π2, π3) , both proposer types offer yS after θS, and yC after θC,

and the DM approves the proposal:

mA(θ, z) = mB(θ, z) = 1θ=θC ; d(ρ, y, z) = 1. (4)

3. (Complexification) If π < π3 and π ∈ [π1, π2) , proposer A offers yC in both states,

proposer B offers yS after θS and yC after θC, and the DM approves the proposal:

mA(θ, z) = 1;mB(θ, z) = 1θ=θC ; d(ρ, y, z) = 1. (5)

4. (Pooling) If π < min{π1, π3}, both proposer types offer yS in both states, and the DM

approves conditional on ρ = s and κ ≤ κ̄:

mA(θ, z) = mB(θ, z) = 0; d(ρ, y, z) = 1{ρ=s and κ≤κ̄}. (6)

Proposition 2 shows that for any noise z, we can map four distinct regions (with two sub-

regions for Pooling) in the (κ, π) space. Figure 1 illustrates these equilibria in the (κ, π)

space for low z (Panel a), medium z (Panel b) and high z (Panel c).

11In a very small space of parameters the BPBE is in mixed strategies, but we ignore them for simplicity.
See appendix if interested also in the mixed strategy equilibria, which do not add anything substantive.
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In the Simplification equilibrium, both proposer types use the same strategies as in the

benchmark, and the DM approves all proposals. Thus, the DM suffers a loss only if the

proposer is B and the state is θC . The threshold π3 reflects the maximum loss the DM

can tolerate: the value at which the DM is indifferent between approving and rejecting the

proposal when her evaluation indicates state θC is more likely, i.e., her signal is ρ = c:

π3(κ, z) = max {0, 1− v

l
· 1− κ

κ
· z

1− z
}. (7)

The threshold π3 increases in κ, because in that case the DM has a higher belief that the

state is θC , in which she may suffer a loss. The threshold also decreases in z. Higher z gives

a signal ρ = c less weight in the DM ’s posterior belief about θ. Thus, the DM places lower

weight on being in the state yC and is willing to tolerate a higher probability that P = B.

The Matching equilibrium is the one where proposer B offers yC after θC . In this equi-

librium, yS is guaranteed to produce a gain over the status quo. After yC , however, the

DM knows that the state must be θC , and that she registers a loss only if the proposer is

a B type. Thus, π2 captures the minimum probability that P = A needed to sustain this

equilibrium:

π2 =
l

v + l
. (8)

This threshold does not depend on κ or z, as the equilibrium play reveals the state θ to the

DM .

In the Complexification equilibrium, proposer A offers yC in all states. The event in

which the state is θC and the proposer is B, in which case the DM makes a loss, is less likely

after observing yC than in the previous equilibria, since now yC is offered by A in all states.

Given these proposer strategies, threshold π1 is the value at which the DM is indifferent

between approving and rejecting the proposal after a signal ρ = c :

π1(κ, z) =
l · (1− z) · κ

(v + l) · (1− z) · κ+ (v − a) · z · (1− κ)
. (9)
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(a) Low noise: z = 0.1 (b) Medium noise: z = 0.25 (c) High noise: z = 0.45

Figure 1: Illustrates the BPBE in the parameter space (κ, π): in the blue area it is the Simplification
equilibrium, in the yellow area it is the Matching equilibrium, in the red area it is the Complexification
equilibrium, in the green area it is the Pooling equilibrium with κ ≤ κ̄, and in the white area it is the
Pooling equilibrium with κ̄ > κ̄. This and all subsequent figures take l = v = 1 and a = 0.5.

As with π3, the threshold π1 is increasing in κ and decreasing in z. The drivers are the same:

the DM ’s probability of suffering a loss is higher when θC is more likely and when the signal

ρ = c is more precise.

In the Pooling Equilibrium, yS is offered in both states by both proposer types. Thus,

the proposer’s type is irrelevant for the DM ’s payoff. What matters is whether yS is adopted

in the state of the world in which it brings a benefit. The DM approves the proposal as long

as state θS is sufficiently likely, i.e., as long as κ is sufficiently low and the signal is ρ = s:

κ ≤ κ̄(z) =
(1− z) · v

(1− z) · v + z · l
. (10)

If κ > κ̄, the DM expects a loss compared to the status quo and thus rejects the proposal.

Given the above description, we note that each boundary between regions changes mono-

tonically with noise z.

Corollary 1 Bounds π1(κ, z), π3(κ, z), and κ̄(z) decrease as z increases. The bound π2 is

independent of z.

The three panels of Figure 1 indicate how the BPBE changes with z. The Simplification

and the Complexification equilibria exist for more parameter values (κ, π) at higher values

of z. At a low z, a signal ρ = c would deter the DM from approving, due to the expectation
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of a loss in state θC . As the noise increases, the DM receives less precise information and

thus she places less weight on the signal.

The Matching and Pooling equilibria are the BPBE for a smaller range of parameter

values as z increases. For the Matching equilibrium, this is due to the Simplification equilib-

rium being sustainable where it was not before. For the Pooling equilibrium, this happens

because the DM responds to less precise information from the signal by demanding a higher

probability of θS, i.e., lower κ, in order to approve. These observations lead to the following

insight.

Corollary 2 Reformism (the probability that a reform proposal is adopted) increases in the

complexity of the environment z when κ ≤ v
l+v

. It decreases in the complexity of the envi-

ronment when κ > v
l+v

.

A more complex environment makes it more difficult for the DM to gather information

about the implications of a reform proposal. With less precise information, the DM essen-

tially has a more porous sifter through which to filter reform proposals. This results in more

proposals getting approved when the DM attaches a prior probability that the state is θS

greater than a threshold. With a high prior that the state is θS, an increase in z can make

the DM switch from a signal-dependent approval strategy to accepting all proposals. Con-

versely, when the DM attaches a higher probability to state θC , an increase in z increases

the likelihood of rejection.

5 The Dynamics of Complexity

In this Section, we consider the dynamics in the complexity of the environment, induced by

reform decisions taken each period. As described in the model setup, adopting a reform in

period t impacts the environment’s complexity in period t + 1, zt+1. Adopting policy yS

reduces zt+1, while adopting policy yC increases zt+1. We examine what this implies for the

evolution and stability of the BPBE given κ and π.
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Proposition 3 Let zmin → 0. Then, the parameter space (κ, π) can be divided in the follow-

ing regions, which characterize the evolution of the initial BPBE given thresholds π1(κ, 1
2
),

π2, π3(κ, 1
2
), and π4(κ, 1

2
) ∈ [0, π2):

1. A Stable region S, where π < π3 and π /∈ [π1, π2]. In this region, the BPBE(κ, π, z0)

is stable ∀z0 ∈
[
zmin, 1

2

]
.

2. An Unstable region U , where π ≥ max{π4, π3}. In this region, there the BPBE(κ, π, z0)

is not stable ∀z0 ∈
[
zmin, 1

2

]
.

3. A Complexity Dependent region D, where (κ, π) /∈ {S,U}. In this region, there

exists zD(κ, π) ∈ (zmin, 1
2
) such that the BPBE(κ, π, z0) is stable(unstable) if z0 ≤ (>

)zD.

The regions described in Proposition 3 are illustrated in Figure 2. Region S contains

the locations (κ, π) where the BPBE(κ, π, z0) is stable. To arrive at this region, we use the

monotonicity of boundary π3, shown in Corollary 1. Then, the stable region is obtained by

examining the case z = 1
2
. At that extreme, the threshold π3(κ, 1

2
) gives the minimum π(κ)

above which the Simplification equilibrium may exist. Thus, any point π(κ) ∈ [π2, π3] is in

the Matching equilibrium for all z. Any point π(κ) < min{π1, π3} is in the Pooling equilib-

rium for all z. In that equilibrium, if z0 is high, the signal is not sufficiently informative, and

the DM rejects any proposal going forward; if z0 is low, the signal is sufficiently informative,

and the DM approves each proposal conditional on ρ = s.

Region D contains the locations (κ, π) where the BPBE is stable if z0 is sufficiently

small, so that the location starts in the Pooling Equilibrium. From Pooling, there cannot be

transitions into a different BPBE, as z weakly decreases in all subsequent periods. Thus,

we have a stable BPBE moving forward. If z0 is sufficiently large, then we are in the

Simplification or in the Complexification equilibrium. From either of these equilibria, if yS is

adopted repeatedly such that z decreases sufficiently, the BPBE switches to Pooling. Thus,

the BPBE is not stable.
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Figure 2: Illustrates the regions described in Proposition 3. Region S is in yellow, region U is in red, region
D is in blue. The boundaries are given by curves π1 − π4.

In region U , the equilibrium can change along the endogenous path of z, starting from

any z0. Consider, for instance, a path of repeated realizations of θC and P = B. Then,

starting in the Simplification equilibrium, yS is proposed, and z endogenously decreases

each period. As z reaches a sufficiently low value, the BPBE changes to Matching or

Complexification. In this case, yC is proposed and z endogenously increases. This raises

z until the BPBE switches to Simplification. As this example suggests, we are in region

U when, for different values of z, either the Simplification equilibrium or the Matching

(Complexification) equilibrium can be the BPBE at a given (κ, π). The boundary between

the Simplification and the Matching regions is given by π3. The boundary between the

Simplification to Complexification regions is given by the value π4 at which both these

equilibria may exist for a given κ and z, i.e. π3(κ, z) = π1(κ, z) = π4.

Throughout region U , switches between equilibria are possible. Next, we show when this

is expected to lead to cycling between equilibria and fluctuations between higher and lower

complexity:

Proposition 4 In a subset of region U , cycles between the Simplification equilibrium and the

Matching or Complexification equilibrium occur in expectation in equilibrium. As z evolves

endogenously,

1. if 1
2
< κ < 1

2π
and max{π2, π3(κ, 1

2
)} < π, then the BPBE cycles between the Simpli-
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fication and the Matching equilibria. The expected frequency of fluctuations increases

in κ.

2. if max{ 1−2κ
2(1−κ)

, π4, π3(κ, 1
2
)} < π < π2, then the BPBE cycles between the Simplification

and the Complexification equilibria. The expected frequency of fluctuations increases

(decreases) in κ if π < (>)1
2
.

Cycling is expected in equilibrium in a non-trivial subset of region U , illustrated in Figure

3. The expectation of cycling between equilibria is a stronger result than the condition that

characterizes the broader region U , which is that there exists at least one possible sequence

{(θt, Pt)}∞t=0 such that the BPBE switches between two equilibria.

At a location (κ∗, π∗), cycling emerges whenever the equilibrium play in one region leads,

on average, to the region boundary changing such that we cross into a new region. In the

new region, the equilibrium play leads, on average, to the boundary changing such that

we cross back into the original region. For instance, if our location is in the Simplification

BPBE, and yS is proposed and adopted, the noise z decreases. This increases the boundary

π3(κ, z). After sufficiently many proposals yS, the boundary crosses location (κ∗, π∗), such

that our location switches to a Matching BPBE. In this region, each proposer offers yS

after θS and yC after θC . After proposal yC , the noise z increases. If state θC is sufficiently

frequent, then z increases, lowering the boundary π3. Our location crosses back into the

Simplification BPBE, and the cycle continues. This dynamic hinges on yS being adopted

sufficiently often in the Simplification BPBE, and yC being adopted sufficiently often in

the Matching BPBE, given the equilibrium strategies. The former requirement places an

upper bound on the probability κ, while the latter places a lower bound on κ. The same

dynamic and intuition applies to cycling between the Simplification and the Complexification

equilibria. We illustrate this result in Figure 4.

The frequency of these cycles is higher when the region boundaries move on average

faster in the direction that generates cycles. In our case, this means that yS is proposed on

average more often in the Simplification region and yC is proposed on average more often
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Figure 3: Illustrates the regions where cycling occurs (in expectation) between the Simplification and the
Matching equilibria (orange) and between the Simplification and Complexification equilibria (violet).

in the Matching / Complexification region. The frequency of yS in the Simplification region

decreases in κ · π; the frequency of yC in the Matching and the Complexification regions

increases in κ and κ · (1 − π), respectively. Thus, there is a trade-off between increasing

the average transition duration from the Simplification equilibrium to the Matching (or

Complexification) equilibrium and increasing the reverse average transition duration.

The cycling described in Proposition 4 happens around the boundary π3(κ, z), which

separates the Simplification BPBE from the Matching (or Complexification) BPBE. Thus,

for any location (κ, π), the cycling happens where π3(κ, z∗) = π, which implies that the

environment’s expected complexity must be

z∗(κ, π) =
l · κ · (1− π)

l · κ · (1− π) + v · (1− κ)
. (11)

We summarize this insight below and describe how z∗ changes with κ and π.

Proposition 5 Cycling between a Simplification equilibrium and a Matching or Complex-

ification equilibrium happens around complexity z∗(κ, π). The value z∗ decreases in π and

increases in κ.

When the proposer is more likely to be low-ability, or the state is more likely to be θC ,

the cycling happens around a higher complexity level, that is, when the DM has less precise

information. This comes in contrast with the standard intuition that a DM would be more
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(a) Cycling, z = 0.25 (b) Cycling, z = 0.19 (c) Cycling, z = 0.26

Figure 4: Panels (a)-(c) illustrate the cycling between the Simplification and the Matching equilibria for the
location κ = 0.55 and π = 0.76. The dashed lines represent the lower and upper limits on κ from Proposition
4 and the boundary of the Matching region, π3(κ, 12 ).

likely to adopt a potentially costlier policy yC when she has more precise information. The

result emerges because cycling here happens due to the change in the proposer’s strategies,

while the DM approves the proposal non-contingently on her signal. Thus, cycling happens

because the proposer adapts his strategy to ensure approval. For cycling to exist, the DM

must choose to not make use of her signal. If the DM is more likely to suffer a loss, either

due to lower π or higher κ, the information provided by the signal is more valuable. For her

to not use this information, the signal must be less precise. This insight highlights that the

cycling here is driven by the strategic interaction between the DM and the proposer. As

we show in Section 6.3, any cycling that could emerge with a singular uninformed proposer-

decider relies on the signal being used. Here, cycling relies on the signal not being used, and

this leads to distinct comparative statics. Specifically, the complexity level around which

there is cycling (z∗) increases as the proposer is more likely to be low-ability (lower π). In a

model with a single proposer-decider, complexity would decrease, as shown in Section 6.3.

We next consider the long-run implications of the endogenous evolution of z.

Proposition 6 In the long-run (as t→∞), the environment’s complexity zt is expected to:

1. converge to 1
2

in the Stable region S if π > π2, and in the Unstable region U if κ ·π > 1
2
.

2. oscillate around z∗(κ, π) in the cycling regions described in Proposition 4.
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3. converge to zmin in the Complexity Dependent region D if π < π4, and in region U if

κ < 1
2

and π > π2 or π < 1−2κ
2(1−κ)

.

4. reach an expected long-run value that depends on the starting z0 in region S if π <

π1(κ, 1
2
), and in region D if π > π1(κ, 1

2
). This value is zmin if BPBE(κ, π, z0) is the

Pooling equilibrium and κ ≤ κ̄, z0 if the BPBE(κ, π, z0) is the Pooling equilibrium and

κ > κ̄, and 1
2

if the BPBE(κ, π, z0) is the Complexification equilibrium.

We illustrate these regions in Figure 5 in the (κ, π) space, and in Figure 6 in a simulation

of the model which shows the endogenous evolution of z given different starting locations

(κ, π). In each region, we compute which policy is expected to be adopted more often, given

the equilibrium strategies. These depend on the proposer’s identity and the state of the

world. If the proposer is more likely to be high-ability (high π) or the state of the world is

more likely to be θC (high κ), then proposal yC is more likely to be offered and adopted.

In a subset of region U , we have cycling, as described in Proposition 5. In the cycling

regions, an intermediate average complexity is maintained in the long-run, whereas in our

benchmark, intermediate levels of complexity cannot be expected in the long-run. Another

substantive difference from the benchmark is that in a non-trivial region, the expected evo-

lution of complexity depends on the initial complexity. The initial complexity determines

the path along which z evolves, whether in the direction of simplification (if in the Pooling

Equilibrium with low z), complexification (if in the Complexification Equilibrium) or main-

taining the status quo (if in the Pooling equilibrium with high z). In this region, there is

a high probability of a loss from the reform: a high likelihood of state θC and proposer B.

Thus, starting in an environment with low complexity, the DM can rely on the signal and

accept proposals yS when ρ = s. This further simplifies the environment. Starting with high

complexity, the DM does not follow the noisy signal. If π is sufficiently high, she approves

any proposal, including a complex one, which then creates even more complexity. If π is

sufficiently low, she rejects any proposal, and the status quo remains in place.
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Figure 5: Illustrates the long-run expected convergence regions for z. In the blue region, z is expected
to converge to zmin. In the yellow region, z is expected to converge to 1

2 . In the red region, long-run z
oscillates around z∗. In the dark green and the light green regions, expected convergence depends on the
initial starting z0: if at z0 the location (κ, π) is in the Complexification equilibrium (the dark green region),
then z is expected to converge to 1

2 , if the location is in the Pooling equilibrium and z ≤ zD, then z converges
to zmin, and if z > zD, then z stays at z0.

(a) Stable Region at location
(κ, π) = (0.8, 0.6)

(b) Cycling Region at location (κ, π) =
(0.38, 0.495)

(c) Unstable Region at location
(κ, π) = (0.25, 0.8)

Figure 6: Illustrates the endogenous z resulting from a simulation of the model over T = 500 periods, with
l = v = 1 and a = 0.5, and (κ, π) indicated for each panel, starting from z0 = 0.25.
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We have shown that each type of policy may be proposed in equilibrium by either type

of proposer, and that the complexity of the environment, as captured by the noise z, may

endogenously evolve to maximally informative signals, to fully uninformative signals, or it

may cycle around intermediate values. Next, we move to discussing these results in light of

several applications, and we show how this framework relates to empirical studies.

6 Applications

In this section, we use our model to shed light on several empirical puzzles regarding the

evolution of complexity and its relationship to regulatory and bureaucratic outcomes.

6.1 Legislative Complexity, Bureaucratic Efficiency and Growth

We start by mapping our model to the production of legislation. It is common in the

production of legislation for a better-informed agent to propose reforms, which must be

approved by a less-informed decision maker.

In the U.S. legislative context, both at the state and federal levels, the proposer is of-

tentimes a bureaucrat, who has expertise on the topic (Bendor and Meirowitz, 2004), i.e,

better information on the relevant state of the world θ.12 Moreover, the bureaucrat is tasked

with the implementation of any adopted reforms, and therefore his ability P is consequential

for the reform’s outcome. The decision-maker is a politician, who can vote to approve or

reject the reform. The politician is electorally accountable for the reform’s effects, while the

bureaucrat is not, which maps into different objectives. The politician’s electoral benefit de-

pends on the reform’s outcome, so both on the economic value of the reform and the private

value of the bureaucrat’s competence. A bureaucrat who is motivated by career concerns

(Alesina and Tabellini, 2007) may find implementing the reform valuable, and he may not

12For instance, Cates (1983), as quoted in Ting (2009), provides the following anecdote: faced with a
proposal to reform Social Security in 1950, Senator Eugene Millikin (R,CO) complained that [t]he cold fact
of the matter is that the basic information is alone in possession of the Social Security Agency. There is no
private actuary...that can give you the complete picture ...I know what I am talking about because I tried
to get that.
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be directly impacted by the outcome of that reform.

In the context of parliamentary systems, like in many European countries, the proposer is

usually a politician, in the legislature or in the executive (Laver et al., 1996). The decision-

maker is the relevant majority leader in the parliament, who controls the vote over its

approval. The proposer politician may have the sole interest of getting a bill passed if he

is strongly office-motivated, and showing legislative activity signals competence to voters or

furthers his career prospects (Canes-Wrone et al., 2001; Gratton and Morelli, 2018; Gratton

et al., 2020). The majority party leadership instead may be evaluated by voters based on the

reform’s outcome. The outcome depends both on the economic state (θ) and the competence

of the proposing politician (P ).

Finally, a reform may reduce legislative contingencies, i.e., it may cut a provision, or it

may add contingencies. As in our model, a reform that cuts a provision has the same effect

regardless of who proposes it, because it does not allow the proposer the freedom to add text

to the law. A reform that adds a provision depends on the competence of the politician, as

new text is added to the legislation.

A growing number of empirical studies have examined the effect of increasing legislative

complexity on the quality of regulatory outcomes, and by extension, on growth. Studies

from different institutional contexts and time periods show potentially opposing effects of

increasing complexity. On the one hand, higher legislative complexity has been shown to

accompany lower quality legislation, worse bureaucratic efficiency and growth (Giommoni

et al., 2020; Gratton et al., 2020). Gratton et al. (2020) examine the production of legisla-

tion in Italy during the First Republic (1948-1992) and the Second Republic (1992-2017).

They show that higher political instability in the Second Republic is associated with lower

quality and more complex legislation compared to the First Republic. They rationalize these

findings by noting that higher political instability shortens the expected political horizon of

legislators. This means that voters are called to evaluate the performance of legislators be-

fore their legislative proposals are fully implemented. This in turn incentivizes incompetent

politicians to propose bad quality legislation, in order to appear hard-working and competent
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to voters. The increase in the production of low quality laws is then shown to have increased

the complexity of the legislation and decreased bureaucratic efficiency.13.

On the other hand, higher legislative complexity has been shown to accompany higher

efficiency and economic growth in different contexts. Ash et al. (2019) examine legislative

complexity in U.S. states over the period 1965-1998. They find that more legislative com-

plexity, in the form of more contingencies and legislative detail, leads to higher economic

growth. The effect is larger when there is higher economic uncertainty, i.e., the state of the

world in which adding more provisions or contingencies is socially beneficial (higher κ).

At first glance, the above results present a puzzle as to when reforms that increase

legislative complexity are desirable. Our model sheds light on this puzzle. Consider starting

from values π and κ at which we are in the Simplification region described in Proposition

2. We examine the effect of decreasing the expected quality of politicians (lower π) and of a

technological shock that increases the benefit of more legislative detail (higher κ).

Remark 1 There exists π̄, κ̄ ∈ (0, 1) such that starting from any (κ, π) with π ≥ π̄, κ ≥ κ̄, a

one-time shock that decreases π or a one-time shock that increases κ may lead to an increase

in the frequency of proposals yC, and higher average complexity z over time. However, the

decrease in π lowers expected payoffs more than the increase in κ, for any given local increase

in complexity caused by such shocks.

A large political instability shock can trigger a shift from the Simplification equilibrium

to the Complexification equilibrium, where all politicians are more likely to propose reforms

that complexify. The increase in ill-fitting reforms reduces expected benefit for voters, and

it leads to increasing complexity of the legislative environment, z (as per Proposition 6).14

On the other hand, considering the effect of a technological shock that makes it more

likely for new legislative provisions to improve private contracting, as in Ash et al. (2019), the

13This Kafkaesque loop also determines endogenously a reduction of the expected quality of politicians
through selection (may endogenously lower π, an element outside our model)

14The Complexification equilibrium in a legislative setting can also be related to kludged politics equilib-
rium of Kawai et al. (2018). In their setting, complexity begets complexity through the cost of disentangling
new provisions from old ones, whereas for us complexity increases due to the strategic choices made by
proposers when the decision maker has high information costs.
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model predicts a shift from the Simplification equilibrium to the Matching equilibrium (or

the Simplification equilibrium if π is sufficiently high). In this case, the frequency of reform

proposals that add provisions (yC) increases, because κ increases, as does the complexity

of the legislative environment, z (as per Proposition 6). An alternative mechanism in the

Ash et al. (2019) study is that the results are driven by competition between states. Under

this mechanism, the complexity z suffers an exogenous downward shock, due to information

arriving from other states that adopted similar reforms. This exogenous shock leads to a

shift from the Simplification equilibrium to the Matching equilibrium.

Intuitively, the instability shock documented in Gratton et al. (2020) lands the system

in the dark green (Kafkaesque) zone of Figure 5; the shock to κ that maps to the likely

motivations for increases in complexification reforms in Ash et al. (2019) lands the system

in the yellow region of Figure 5, which does not entail a significant reduction in payoff for

the DM . In the first case, more proposals yC are made when they are not beneficial for

the decision-maker: the expected need for reforms that add provisions does not change (κ

stays the same); however, in the Complexification region, proposers switch to offering these

reforms more often, both when they are not needed (in the case of competent proposers) and

when they cannot be aptly drafted (in the case of incompetent proposers). In the second

case, more proposals yC are made because the need for such reforms increases (κ increases).

Translating the change in the decision-maker’s expected payoff to growth / efficiency, we

obtain the prediction that growth / efficiency would be higher in the second case compared

to the first case.

6.2 Regulation and Deregulation Cycles

Another natural application of our model is to lobbying and regulation. The central role

played by special interest and lobby groups in regulatory policy making is well documented

in the literature (Grossman and Helpman, 2001). These groups explicitly write bills to be

introduced in legislatures (Levy and Razin, 2013) or rules to added during the rulemaking

process (Bertrand et al., 2018). In terms of our model, the proposer maps to an interest
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group. This group’s goal is to have its proposal adopted by the decision maker, who is either

the relevant legislator or regulator. Legislators possess less information about the effects of

the proposal compared to the interest groups, who are experts on their industry. Similarly, in

many industries, the high degree of specialization and higher complexity of the environment

(higher z) makes industry insiders also better informed than regulators on the effects of

their proposal (McCarty, 2017). Moreover, an interest group’s current stance on an issue

may be aligned or misaligned with the public interest, and this positioning is many times

not transparent. For instance, Bertrand et al. (2018) show that non-profit groups are tied

to firms through difficult to trace links (donations by charitable arms of U.S. corporations),

and these non-profits submit proposals for rules that favor their donors. Then, a misaligned

interest group maps in our model to proposer B, whose drafting of the reform is detrimental

to welfare. An aligned interest group maps to proposer A, whose drafting of the reform is

beneficial to welfare.

A simplifying reform (yS) can be mapped to removing a regulatory contingency (deregu-

lation), while a complexifying reform (yC) can be mapped to adding a regulatory contingency

(more regulation). Our model delivers several insights regarding the evolution of regulation

and the complexity of the regulatory environment. Interestingly, the model shows that cycles

of regulation and deregulation may be obtained both through exogenous changes in economic

conditions and endogenously due to the incentives of interest groups.

Remark 2 Cycles between increasing and decreasing regulatory complexity may emerge:

1. exogenously, due to shocks to κ, the likelihood of being in the state of the world in which

additional contingencies are beneficial.

2. endogenously, due to the evolution in the complexity of the regulatory environment, z,

that changes the incentives of interest groups to propose or remove contingencies.

First, our model allows us to consider shocks to economic conditions that change the

likelihood that more regulatory contingencies are beneficial (changes in κ). Such shocks may

shift the equilibrium play from one in which reform proposals more often reduce regulatory
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contingencies (the Simplification region) to one in which reform proposals increase regulatory

contingencies (the Complexification region). Such variation is consistent with the empirical

evidence that periods of financial innovation are accompanied by simplification of regulation,

while periods of crisis are accompanied by increases in regulatory contingencies. This pattern

has been documented empirically in both the United States and in Europe, since the South

Sea Bubble and up to the 2008 financial crisis (Almasi et al., 2018; Barth et al., 2012; Dagher,

2018). It is worth mentioning that the shift described above cannot happen in the model if

the proposer is highly likely to be aligned with the regulator (high π). Empirically, Dagher

(2018) finds that the aforementioned pattern is not encountered around the Swedish banking

crisis of the 1990s. Consistent with our model, he points to political institutions which grant

less access to private interests (which corresponds to high π in our model).

Second, cycles of regulation and deregulation are not necessarily driven by shocks to eco-

nomic conditions or technology. In fact, they can emerge endogenously due to the incentives

of interest groups and regulators, as derived in Proposition 4. The complexity of the regu-

latory environment, z, evolves endogenously, and it changes the interest groups’ incentives.

When z is small, both aligned and misaligned interest groups are more likely to propose

adding contingencies. As these contingencies are adopted, the regulatory environment be-

comes more complex, and interest groups switch to proposing simpler rules. These proposals

are adopted, they simplify the regulatory environment, thus generating a cycle of regulation

and deregulation. This dynamic complements the result in Asriyan et al. (2020) that aligned

proposers may complexify regulation, while misaligned proposers may simplify regulation.

Exogenous changes in κ or π do, however, affect the endogenous regulatory cycles. Propo-

sition 6 implies that the long-run complexity around which regulatory cycles occur, z∗, in-

creases in κ and decreases in π. Thus, technological shocks that increase the likelihood that

more regulation is beneficial also increase the long-run complexity around which we may

observe cycling. Similarly, if proposers are less aligned, long-run complexity may actually

increase, even if there are episodes of deregulation (simplification) as part of the cycle.

Finally, Proposition 4 shows that cycling happens for moderate values of both π and κ.
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These are the situations in which there is higher uncertainty about the alignment of interest

groups and about the appropriateness of making regulatory changes. In industries in which

these conditions are met, the lobbying process and the incentives of interest groups to have

their proposals approved lead to a cycle of complexification and simplification. This cycle

emerges due to the rule-making process in regulatory agencies, complementing or amplifying

similar dynamics that emerge due to the electoral motivations (McCarty et al., 2013) or due

to exogenous shocks (Fernández-Villaverde et al., 2013).

6.3 Checks and Balances

Our model can contribute to the discussion on the desirability of checks and balances. The

proposer P , whether a politician or an interest group, cannot have his policy implemented

unless it is approved by a gatekeeper, DM . This gatekeeper represents a system of checks

and balances. We assume that the DM in this case seeks to maximize the expected social

welfare. We can compare this to having a singular proposer-decider.

The case in which there is a single decision-maker who is uncertain about her competence

at implementing a reform, π ∈ (0, 1), is equivalent to assuming that the decision whether to

undertake a reform is taken before the identity of the reformer is revealed. Moreover, as in

our main model, the decision maker cannot observe θ. She only receives signal ρ, with noise

z. Thus, with a single decision maker, we no longer have a proposer with an informational

advantage over the regulator. After observing signal ρ, the decision maker chooses the policy

that maximizes her expected utility (yS, yC , or the status quo).

The decision-maker’s optimal choice at each (κ, π) is illustrated in Figure 7. If the

probability of a loss from reform (state θC and B competence) is low, then the decision-

maker adopts reform yS regardless of signal, as this reform is most likely to match the state

and deliver a benefit. The region of the parameter space where this decision is optimal is

illustrated in dark blue. If the probability of state θC is high, and competence is expected

to be high, the decision-maker chooses yC regardless of signal, as she expects this reform

to match the state and produce a gain. This region of the parameter space is illustrated in
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Figure 7: Illustrates the single decision-maker’s policy choice given z = 0.25. In the dark blue region, yS is
chosen regardless of signal, in the light blue region, yS is chosen after ρ = s and the status quo is maintained
after ρ = c. In the dark orange region, yC is chosen regardless of signal, in the light orange region, yC is
chosen after ρ = c and the status quo is maintained after ρ = s. In the yellow region, yS is chosen after
ρ = s and yC is chosen after ρ = c. In the white region, the status quo is maintained regardless of signal.

dark orange. For intermediate values of κ, there is high uncertainty about the state of the

world, and the decision maker relies on her signal to choose policy. She chooses policy yS

after signal ρ = s. After ρ = c, she expects state θC to be more likely. In that case, she

wants to implement policy yC only if she is likely to be competent, i.e., π is sufficiently high

(the yellow region in the figure). Otherwise, maintaining the status quo is preferable (the

light blue region in the figure). Finally, if κ is very high, the regulator expects state θC . If

there is high uncertainty about her competence (intermediate π), then she uses the signal to

choose yC after ρ = c and maintain the status quo otherwise (the light orange region in the

figure). If she expects to not be competent, then a reform is expected to produce a loss, and

she therefore maintains the status quo regardless of signal (the white region in the figure).

Cycling can emerge with a single decision-maker, but in a different form and for different

reasons than in the main model. There is cycling between implementing a reform and

implementing no reform, and the cycling is contingent on the signal ρ = c.15 This result

15When z is high, the signal ρ = c is less informative, and the decision-maker is not willing to take a risk
of implementing policy yC , as it only delivers a benefit if the state is θC . She then maintains the status
quo after ρ = c. After signal ρ = s, the decision-maker still implements yS , as state θS is sufficiently likely.
Implementing yS decreases the average noise z, which in turn makes the signal more informative. This
induces the decision-maker to implement yC after ρ = c.
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has a straightforward intuition: as the decision maker receives more precise information, she

acts on that information to implement a more risky, complex reform. As the information

becomes less precise, the decision-maker maintains the safe status quo. In contrast to the

cycling obtained in the main model, this cycling is driven by the decision maker conditioning

reform yC on the precision of her information. This also implies that the z∗S(κ, π) around

which cycling happens in this case increases in its arguments. As π decreases, the decision-

maker faces a higher likelihood of a loss from reform yC , and therefore requires a more precise

signal in order to adopt this reform. In our main model the cycling emerges when the decision

maker is not making decisions contingent on her signal, while here the cycling is driven by

the decision maker acting contingent on her signal. This leads to the contrasting result: For

a (κ, π) in the intersection of region U and this cycling region, cycling that happens at high

complexity in the main model happens at low complexity here, and vice-versa.

Given our assumption that the regulator is benevolent, and her payoff equals the social

welfare, we can evaluate checks and balances in terms of their welfare implications.

Remark 3 Checks and balances deliver higher expected social welfare than a single unin-

formed decision maker.

Compared to the single decision maker, checks and balances allow for more information to

be accessed before a decision is made. This is because the proposer has private information,

which is reflected in the equilibrium strategies, and the decision maker forms beliefs that

are consistent with those strategies. In sum, checks and balances allow for some access to

information (because of the informed proposer) and some rejection of proposals which are

expected to bring a loss. They limit the downsides of a single uninformed decision maker.

In fact, the solution of the single decision maker could be implemented in the system with

checks and balances, as it is in the Pooling region. Yet, strategies with different proposer

types proposing different policies yield higher expected welfare.

Another dimension along which we can evaluate checks and balances is the resulting

complexity of the regulatory environment.
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Remark 4 A system of checks and balances does not lead to everywhere higher or to every-

where lower expected complexity of the environment (z) in the long-run compared to a single

uninformed decision-maker.

Intuitively, on the one hand, checks and balances reduce long-run complexity because

policy yC is implemented less often for most parameter values. With an informed proposer,

policy yC may be offered only after θC , and the decision maker may reject proposals for

high values of κ and low values of π. On the other hand, checks and balances increase

long-run complexity because they support equilibria where yC is offered more often, i.e.,

the Complexification equilibrium. The informed proposer chooses yC more often in order to

get approval from the decision maker given her beliefs. This insight complements that of

Gratton and Morelli (2018). In their model, checks and balances reduce the frequency with

which bad reforms are approved (type I errors), but they also increase the frequency with

which good reforms are rejected (type II errors). We also obtain the result that checks and

balances help decrease the frequency of type I errors, outside the Complexification region,

where she approves yC less often. Yet, checks and balances increase the frequency of type

I errors inside the Complexification region, where the decision maker approves yC when it

follows state θS or proposer B. Finally, Remark 4 relates to the debate on whether shifting

the authority over approving the details of reforms from legislators to regulators will result

in more simplification (as argued by Teles, 2013) or whether removing checks and balances

increases instability (as argued by Besley and Mueller, 2018), and by extension complexity, as

the environment becomes more uncertain. Our results bring a note of caution to both these

theses. As shown above, long-run complexity comparisons depend on the fundamentals.

7 Concluding Remarks and Future Directions

In this paper we have analyzed a large class of situations where decision making typically

involves an informed but potentially low-ability proposer and a decision maker, typically less

informed. In particular, we have endowed the proposer with a choice between proposing new
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details (in a law or regulation) or proposing elimination of details or contingencies. When

the proposer cares about passing her proposal no matter what, her proposal can sometimes

be a more detailed law even though the situation is such that this complexification is not

beneficial for the general public.

We have first characterized the equilibrium between proposer and decision maker for

every pair of common state and private type asymmetric information parameters, and then

we have studied the implications of such equilibrium reforms for the endogenous evolution of

complexity. In the long run, for a large set of intermediate parameter values, the endogenous

level of complexity fluctuates around an intermediate level. This level is increasing in the

probability that the proposer is low-ability. This finding highlights that even if complexity

relates to the common state information asymmetry, the additional fear of captured or

incompetent proposers actually has negative spillovers on complexity itself.

We showed that the proposed model allows us to nest and reconcile a number of recent

findings in legislative politics and regulation studies, and could be useful for institutional

design. We closed the analysis by showing that indeed with our assumptions the presence of

a veto player (checks and balances) is justified, because welfare is higher than in the absence

of such a player. The comparison in terms of long run complexity is instead ambiguous.

In future research, the model may be connected to the literature on endogenous incom-

pleteness of contracts (Tirole, 1999). Adopting a complexification reform can be mapped

to making a contract more complete. This may be beneficial or it may be detrimental, de-

pending on the alignment of interests between proposer and decision maker. A regulator

may decide not to introduce a proposed completion of a contract for lack of trust that the

benefits from the additional contingencies will truly outweigh the costs of writing them and

the costs of enforcing them. For instance, the regulator may think that the costs may be

on everybody whereas the benefits might be concentrated in the proposing interest group

only. Endogenous incompleteness is more likely to emerge when there is a higher likelihood

that additional contingencies are beneficial (high κ), the regulator faces high uncertainty (π

is not too high), and there is high noise (z is higher). This insight is distinct from that
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obtained when endogenous incompleteness is due to writing costs alone. In Battigalli and

Maggi (2002), where the focus is on endogenous incompleteness due to writing costs, greater

uncertainty could cause an increase in the likelihood that more contingencies are beneficial,

thus decreasing endogenous incompleteness. Making the link between contract incomplete-

ness and our framework leads to the conjecture that higher uncertainty in the form of higher

complexity of the environment could make contracts more incomplete. This in turn may

have the collateral effect of transferring more power to some institutions over others, for

instance giving more power and discretion to the bureaucracy.

Another important direction for future research is the comparative politics or comparative

institutions direction. In the US, policy reforms are delegated to a bureaucratic agency. In

Europe, the European Commission or other bureaucratic agencies decide on regulation. But

in many other countries the legislators delegate less, and the decision maker is a member

of parliament. For this case, we must consider also accountability, coalition formation, etc.

Relatedly, we could extend the analysis to reform complementarities. A complexification

reform could induce positive returns when combined with other changes proposed by other

proposers on connected issues. This complementarity would reduce the incentive of the

regulator to adopt a complex policy, given the uncertainty about the possibility that the

complementary reform will also occur.

Some research could also be dedicated to the connection between complexity cycles and

the business cycle. At a time in which complexity of the environment is very high it may be

good to simplify decision making. Especially in the case in which complementarities exist or

coordination is necessary, like in the case of the Covid-19 crisis, it would seem that complex

designs could lose all their potential strength if adopted in isolation.

Lastly, our framework has focused on incremental reforms only. A next step would be

to also consider the alternative of radical reforms or revolutions. The incremental dynamics

of reforms could then be contrasted to the dynamics of major policy changes. In line with

the view of Acemoglu and Robinson (2019), our model suggests that the continuous process

of incremental reforms may stop when the perception is that more elaborate reforms would
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be necessary but the elite of proposers is perceived to be bad or captured (low trust in

institutions and low confidence in expertise in their terminology). Hence, such situations are

exactly those where the world of incremental reforms stops and the chapter of institutional

regime change begins.
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A Proofs

A.1 Proof of Proposition 1

If the proposer is A, the DM ’s payoff is maximized for yS after θS and yC after θC . If the
proposer is B, the DM ’s payoff is positive only after θS and yS. Thus, in an equilibrium
where A offers yS after θS and yC after θC , the DM ’s best response is to approve with with
probability 1. This proposer strategy gives the DM the highest payoff. If the proposer is B,
the DM ’s best response is to approve only if she receives proposal yS and she expects θS is
sufficiently likely such that κ · (−l) + (1 − κ) · v ≥ 0. Thus, she approves if κ ≥ v/(v + l).
Proposing yS regardless of state is a dominating strategy for B, since yC would be rejected
with probability one.

A.2 Proof of Proposition 2

The decision-maker’s approval strategy :
Given a proposal y, signal ρ and noise z, the DM approves it if

E [v (θ, y) |y, ρ]− w ≥ 0. (12)

We examine this approval condition after each possible combination of y and ρ:

1. After yS and ρ = s:[
Pr
(
yS|θH , A

)
· π + Pr

(
yS|θH , B

)
· (1− π)

]
· κ

[Pr (yS|θL, A) · π + Pr (yS|θL, B) · (1− π)] · (1− κ)
≤ v

l
· 1− z

z
(13)

2. After yS and ρ = c:[
Pr
(
yS|θH , A

)
· π + Pr

(
yS|θH , B

)
· (1− π)

]
· κ

[Pr (yS|θL, A) · π + Pr (yS|θL, B) · (1− π)] · (1− κ)
≤ v

l
· z

1− z
(14)

3. After yC and ρ = s:

1

1 + Ψ (1− z)
− c

v + l
· 1

1 + Υ (1− z)
≥ l

v + l
, (15)

where

Ψ (1− z) ≡
z · κ · Pr

(
yC |θH , B

)
+ (1− z) · (1− κ) · Pr

(
yC |θL, B

)
z · κ · Pr (yC |θH , A) + (1− z) · (1− κ) · Pr (yC |θL, A)

1− π
π

, (16)

Υ (1− z) ≡
z · κ ·

[
Pr
(
yC |θH , A

)
· π + Pr

(
yC |θH , B

)
· (1− π)

]
(1− z) · (1− κ) · [Pr (yC |θL, A) · π+ Pr (yC |θL, B) · (1− π)]

. (17)
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4. After yC and ρ = c:

1

1 + Ψ (z)
− c

v + l
· 1

1 + Υ (z)
≥ l

v + l
, (18)

where

Ψ (z) ≡
(1− z) · κ · Pr

(
yC |θH , B

)
+ z · (1− κ) · Pr

(
yC |θL, B

)
(1− z) · κ · Pr (yC |θH , A) + z · (1− κ) · Pr (yC |θL, A)

1− π
π

, (19)

Υ (z) ≡
(1− z) · κ ·

[
Pr
(
yC |θH , A

)
· π + Pr

(
yC |θH , B

)
· (1− π)

]
z · (1− κ) · [Pr (yC |θL, A) · π+ Pr (yC |θL, B) · (1− π)]

. (20)

Pure Strategy Equilibria We consider all the possible pure strategy equilibria where
there is a positive probability of acceptance:

1. Equilibrium where B proposes yS, and A proposes yS after θS and yC after
θC

The DM approves with probability 1 after observing yC . After observing yS, the DM ’s
response is

• after signal ρ = s, approve if

1− v

l
· 1− κ

κ
· 1− z

z
≤ π, (21)

• after ρ = c, approve if

1− v

l
· 1− κ

κ
· z

1− z
≤ π. (22)

Thus, the DM approves regardless of signal (and this equilibrium exists) if

π ≥ 1− v

l
· 1− κ

κ
· z

1− z
. (23)

The DM ’s expected payoff given this equilibrium play is

U (1) − ω = κ · π · v − κ · (1− π) · (l − a) + (1− κ) · v. (24)

2. Equilibrium where all proposers chose yS after θS and yC after θC After
observing yS, the DM approves with probability one. After observing yC , the DM approves
if

π ≥ l

v + l
. (25)

The DM ’s expected payoff given this equilibrium play is

U (2) − ω = κ · π · v − κ · (1− π) · l + (1− κ) · v. (26)
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3. Equilibrium where proposer A chooses yC for all θ and proposer B chooses
yS if θL and yC if θH .

After observing yS, the DM approves with probability 1. After observing yC , the DM
approves in the following cases:

• after ρ = c, if

π ≥ πmch = l · (1− z) · κ
(1− z) · κ · (v + l) + (v − a) · z · (1− κ)

. (27)

• after ρ = s, if

π ≥ πmcl = l · z · κ
z · κ · (v + l) + (v − a) · (1− z) · (1− κ)

. (28)

Since 1−z
z
≥ z

1−z , we have

πmch ≥ πmcl. (29)

Thus, this equilibrium exists if π ≥ πmch. The DM ’s expected payoff given this equilibrium
play is

U (3) − ω = κ · π · v − κ · (1− π) · l + (1− κ) · π · (v − a) + +(1− κ) · (1− π) · v. (30)

4. Pooling on yS for all θ:
The DM ’s approval condition reduces to

1. If ρ = c :
(1− z) · (1− k) · v − z · k · l ≥ 0. (31)

2. If ρ = s :
z · (1− k) · v − (1− z) · k · l ≥ 0. (32)

Thus, an equilibrium with pooling on yS (regardless of θ) and probability one of approval
exists if

k ≤ kpool ≡ z · v
z · v + (1− z) · l

(33)

An equilibrium with pooling on yS and approval conditional on ρ = s exists if

k ≤ kcp ≡ (1− z) · v
(1− z) · v + z · l

, (34)

and the DM ’s off path belief is that a deviation has come from proposer B.
The DM ’s expected payoff given the equilibrium play with conditional approval is

U (4) − ω = −z · κ · l + (1− z) · (1− κ) · v. (35)
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5. Pooling on yC regardless of θ
If the proposer only offered yC the DM ’s approval decision reduces to:

• After ρ = c :

π ≥ l

v + l
+

c

v + l
· 1

1 + (1−z)·κ
z·(1−κ)

, (36)

• After ρ = s :

π ≥ l

v + l
+

c

v + l
· 1

1 + z·κ
(1−z)·(1−κ)

. (37)

If yS were proposed (off-equilibrium), then the DM ’s expected payoff from accepting, given
her belief about who deviated is

− κ̂ · l + (1− κ̂) · v, (38)

so a deviation is not profitable as long as

κ̂ >
v

v + l
,

where κ̂ = Pr(θC |yS) is the belief that a deviation is undertaken in state θC . Then, an
equilibrium with pooling on yC and positive probability of acceptance exists and

• If

π ∈

[
l

v + l
+

c

v + l
· 1

1 + (1−z)·κ
z·(1−κ)

,
l

v + l
+

c

v + l
· 1

1 + z·κ
(1−z)·(1−κ)

]
, (39)

the DM accepts contingent on ρ = c;

• If

π ≥ l

v + l
+

c

v + l
· 1

1 + z·κ
(1−z)·(1−κ)

, (40)

the DM accepts regardless of signal.

The DM ’s expected payoff given this equilibrium play is

U (5) − ω = π · v − (1− π) · l − (1− κ) · c. (41)

6. Equilibrium where proposer A offers yS after θS and yC after θC , and
proposer B offers yC in all states

After yS, the DM accepts with probability 1. After, yC the DM approves if

• after signal ρ = c :

π ≥ l · (1− z) · κ+ (l + c) · z · (1− κ)

(v + l) · (1− z) · κ+ (l + c) · z · (1− κ)
. (42)
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• after signal ρ = s :

π ≥
l · κ+ (a+ l) · 1−z

z
· (1− κ)

(v + l) · κ+ (a+ l) · 1−z
z
· (1− κ)

. (43)

Thus, the DM approves regardless of signal if

π ≥
l · κ+ (a+ l) · 1−z

z
· (1− κ)

(v + l) · κ+ (a+ l) · 1−z
z
· (1− κ)

. (44)

The DM ’s expected payoff given this equilibrium play is

U (6) − ω = κ · π · v − κ · (1− π) · l + (1− κ) · π · v +−(1− κ) · (1− π) · (l + c). (45)

Ranking on Equilibria Notice then that U (1) ≥ U (2) > U (3) > U (6) > U (4). Also,
U (6) > U (5), and Then,

π3 ≡ 1− v

l
· 1− κ

κ
· z

1− z
. (46)

π2 ≡
l

v + l
. (47)

π1 ≡
l · (1− z) · κ

(1− z) · κ · (v + l) + (v − a) · z · (1− κ)
. (48)

Also, let

πpool ≡ l

v + l
+

c

v + l
· 1

1 + z·κ
(1−z)·(1−κ)

(49)

πcompl ≡
l · κ+ (a+ l) · 1−z

z
· (1− κ)

(v + l) · κ+ (a+ l) · 1−z
z
· (1− κ)

(50)

Notice that π2 ≤ πpool and π2 ≤ πcompl for any κ and z. Thus, the parameter values for
which equilibria 5 and 6 exist are also the parameter values for which equilibrium 2 exists.
Notice also that at kpool, we have π3(kpool) = 0, and π3 increases in k. Thus the equilibrium
with pooling at yS at approval probability one exists only when equilibrium 1 also exists.
However, equilibrium 4 with approval conditional on ρ = s exists since π(kcp) > 0.

Thus, the Best Perfect Bayesian equilibrium may take forms 1-4, with the boundaries
between these regions given by π1 − π3.

Other proposer strategies. Notice that the other possible pure strategies are not part
of an equilibrium in which there is a positive probability of acceptance. Specifically, if all
proposers offer yS after θH and yC after θL, the DM would surely reject after yS. Thus, this
cannot be an equilibrium. Similarly, consider the case where proposer A chooses yS in all
states and proposer B chooses yS after θS and yC after θC . After yC , the DM rejects with
probability 1. Thus, this cannot be an equilibrium.
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A.3 Proof of Corollary 1

From (46) - (48), it follows that

∂π3

∂z
≤ 0;

∂π2

∂z
= 0;

∂π1

∂z
≤ 0. (51)

Also, the upper bound κ̄ for the Pooling region changes as follows:

∂κ̄

∂z
=

−v · l
((1− z) · v + z · l)2 < 0. (52)

A.4 Proof of Corollary 2

The boundary of the region where proposals are accepted with probability one is given by

πB ≡ min{π1, π2, π3}. (53)

From Corollary 1, it follows that πB weakly decreases in z at each κ. Thus, the boundaries of
the Simplification and the Complexification equilibria expand. At z = 1

2
, π3 ≥ 0 for κ ≤ v

l+v
.

Thus, in the region where κ ≤ v
l+v

, πB ≥ 0 and it increases. The BPBE becomes ones
in which the proposal is accepted with probability one, instead of the Pooling equilibrium,
where the proposal is accepted with probability z · κ+ (1− z) · (1− κ).

If κ > v
l+v

, the bound κ̄ decreases as z increases:

∂κ̄

∂z
= κ̄ · −v

1− z
. (54)

The bound π1 decreases as z increases:

∂π1

∂z
= π1 ·

−(v − a) · (1− κ)

1− z
. (55)

Thus, the region where the proposal is rejected changes approximately by −∂κ̄
∂z
· π1(κ̄, z) +

∂π1
∂z
· κ̄. Notice that

∂κ̄
∂z
· π1(κ̄, z)
∂π1
∂z
· κ̄

=
v

(v − a) · (1− κ)
> 1. (56)

Thus, the region of the parameter space (κ, π) where the proposal is rejected expands as
z increases. At the maximum z, κ̄ = v

l+v
. Thus, the region where the proposal is rejected

expands as z increases, from a lower bound κ̄→ 1 as zmin → 0 to v
/
v + l when z = 1

2
.
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A.5 Proof of Proposition 3

In the Simplification, Matching and Complexification equilibria, both yS and yC may be
proposed with positive probability in equilibrium. Thus, the noise z may either increase or
decrease. In each of these regions, there are realizations of θ and P such that z increases
in ∆ increments until the maximum noise of 1

2
is reached. Similarly, there exist paths with

realizations of θ and P such that z decreases by ∆ each period, until the minimum noise
zmin is reached.

The Stable Region. Consider the Simplification BPBE. By Corollary 1, the boundary
value π3 weakly decreases in z. Thus, theBPBE is stable and the same for any z0 ∈ [zmin, 0.5]
if π ≥ π3(κ, zmin). As zmin → 0, π3(κ, zmin)→ 1, meaning that this region contracts to 0.

Consider the Matching BPBE. The lower bound π2 = l
l+v

does not change with z.
However, the upper bound of this region, given by π3 decreases in z. Thus, the region where
π ∈

[
π2, π3(κ, 1

2
)
)

is a Matching BPBE for all z ∈ [zmin, 0.5]. It is therefore stable and the
same for all z ∈ [zmin, 0.5].

Consider the Complexification BPBE. The upper bound π2 = l
l+v

does not change with
z. The lower bound for this region is given by π1(κ, z), which decreases in z. Thus, the
BPBE is the Complexification equilibrium for all z if π ∈

[
π1(κ, zmin), π2

)
. As zmin → 0,

the interval for π contracts to 0.
Consider the Pooling BPBE. The boundary of the region where Pooling is the BPBE

expands as z decreases: π1, π3, and κ̄ all increase. The value of κ̄ is v
l+v

at z = 0.5 and

converges to 0 as zmin → 0. Thus, for any (κ, π), there exists a value z′ at which the BPBE is
Pooling with approval conditional on signal for z < z′ and Pooling with rejection for z > z′.
Hence, the BPBE is stable.

The Unstable and Complexity Dependent Regions. Consider the regions where
the BPBE is not stable. This implies that for each (κ, π) in these regions, there exists
z′(κ, π) ∈ (zmin, 0.5) at which (κ, π) is on the boundary between two different BPBEs.

Consider first the boundary π3(κ, z), with z′(κ, π) defined as π = π3(κ, z′). For π3(κ, z) ≥
π2, the boundary is between the Simplification BPBE, when z ≥ z′ and the Matching
BPBE, when z < z′. In both of these equilibria, either yS or yC may be proposed along
the equilibrium path. Thus, we can construct an path of possible realizations of θ and P
such that yC is proposed when z < z′ and yS when z > z′. Along such a path, the BPBE
switches between Simplification and Matching, and it is hence not stable. Each location
(κ, π) at which π = π3(κ, z′) > π2 is therefore not stable. If the location is outside region C,
then there In the Transitional region.

Let κM be defined as the value at which π3(κM , 1
2
) = π1(κM , 1

2
). For any κ ≤ κM , let

π4 be defined as the value at which the following equality is satisfies for some z in
[
zmin, 1

2

]
:
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π3(κ, z) = π1(κ, z). Given the expressions for π3(κ, z) and π1(κ, z), we obtain

π4 = 1−
√

((v)2 − l · c)2 + 4 · l · (v)3 − ((v)2 + l · c)
2 · l · (v − a)

. (57)

Hence, for π ≥ π4 and z, the BPBE is Simplification if z ≥ z′ and it is Complexification if
z < z′. Thus, if π3(κ, z) ∈ [π4, π2), then the boundary is between the Simplification BPBE,
when z ≥ z′ and the Complexification BPBE, when z < z′. In both of these equilibria, both
yS and yC may be proposed along the equilibrium path. Thus, as above, we can construct an
path of possible realizations of θ and P such that yC is proposed when z < z′ and yS when
z > z′. Along such a path, the BPBE switches between Simplification and Complexification,
and it is hence not stable. Each location (κ, π) at which π = π3(κ, z′) ∈ [π4, π2) is therefore
in the Transitional region.

For π < π4, the BPBE is Pooling if z ≤ z′, and it is Simplification if z > z′. In
the Pooling equilibrium, proposals yC are not approved. If z ≤ z′, we are in the Pooling
equilibrium. Once there, z may only further decrease. Hence, the BPBE is stable for
z < z′. If z0 > z′, then any realized sequence of θ and P results in either (i) zt ≤ z′ in some
period t, in which case the BPBE(κ, π, zt) is stable, or (ii) zt > z′ for all t > 0, in which
case the BPBE(κ, π, zt) is stable as well (Simplification along the entire path). Thus, if
π = π3(κ, z′) < π4, then we are in the Complexity Dependent region.

Consider next the boundary π1(κ, z), with z′(κ, π) now defined as π = π1(κ, z′). The case
where π1(κ, z) = π3(κ, z) was discussed above. For κ > κM , the BPBE is Pooling if z ≤ z′,
and it is Complexification if z > z′ and π < π2. In the Pooling equilibrium, proposals yC are
not approved and thus z may only decrease (or stay the same). Hence, the BPBE is stable
for z < z′. If z0 > z′, then any realized sequence of θ and P results in either (i) zt ≤ z′

in some period t, in which case the BPBE(κ, π, zt) is stable, or (ii) zt > z′ for all t > 0,
in which case the BPBE(κ, π, zt) is stable as well (Complexification along the entire path).
Thus, if π > π1(κ, z′) and π < π2, then we are in the Complexity Dependent region.

A.6 Proof of Proposition 4

Consider z0 ∈
(
zmin, 1

2

)
and a location (κ, π) in the Transitional region such that π3(κ, z0) ≤

π. Then, zt, for t = 1, 2, ... is expected to evolve as follows:

zt = zt−1 + Pr(yC , a = 1) ·∆− Pr(yS, a = 1) ·∆. (58)

Thus, zt is expected to decrease if Pr(yC , a = 1) < Pr(yS, a = 1), and it is expected
to increase if Pr(yC , a = 1) > Pr(yS, a = 1). For the Simplification BPBE, given the
equilibrium strategies, Pr(yC , a = 1) < Pr(yS, a = 1) reduces to

κ · π < κ · (1− π) + (1− κ), (59)
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or

κ <
1

2π
. (60)

If at period t the noise zt decreases to z∗ such that π ≤ π3(κ, z∗), the Simplification BPBE
is not longer achievable. The equilibrium play switches to another BPBE. If this BPBE
is Matching, then given the equilibrium strategies, Pr(yC , a = 1) > Pr(yS, a = 1) reduces to

κ > 1− κ. (61)

Thus,

κ >
1

2
. (62)

If condition (62) is satisfied, zt is expected to increase, which lowers π3(κ, zt). Then, for
zt ≥ z∗, π ≥ π3(κ, z∗), and the BPBE switches to Simplification. Thus, under conditions
(60) and (62), we obtain cycling between Simplification and Matching in region U .

In the Complexification BPBE, given the equilibrium strategies, Pr(yC , a = 1) >
Pr(yS, a = 1) reduces to

κ+ (1− κ) · π > (1− κ) · (1− π). (63)

Thus,

κ >
1− 2π

2(1− π)
. (64)

Then, under conditions (60) and (64), we obtain cycling in region U , along the Simplification
/ Complexification boundary, i.e., when π > max{π4, π3}.

Frequency of Fluctuations The frequency of fluctuations is highest when the number
of periods needed to cross from one region to the other and back is minimized, i.e., when
Pr(yS|Simplification) and Pr(yC |Matching/Complexification) are maximized. For cycling be-
tween Simplification and Matching, Pr(yS|Simplification) = 1−κ ·π and Pr(yC |Matching) =
κ. Then, 1− κ · π + κ decreases in π and it increases in κ.

For cycling between Simplification and Complexification, {Pr(yS|Simplification) = 1−κ·π
and Pr(yC |Complexification) = κ+π ·(1−κ). The frequency of fluctuations is then increasing
(decreasing) in κ when π < (>)1

2
, and it is increasing (decreasing) in π when κ < (>)1

2
.

A.7 Proof of Proposition 5

From (11), it follows immediately that ∂z∗

∂π
< 0 and ∂z∗

∂κ
> 0.

A.8 Proof of Proposition 6

As shown in the proof to Proposition 4, in the Simplification BPBE, z decreases on average
if condition (60) is satisfied, i.e., κ · π < 1

2
. Under this condition, zt is expected to decrease,

and as t→∞, it is expected to go to zt = zmin. The noise increases on average if κ · π > 1
2
,
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so, as t → ∞, the expected zt = 1
2
. Finally, the noise is expected to stay at the status quo

value if κ · π = 1
2
. So, as t→∞, expected zt = z0.

In the Matching BPE, from (62) as t → ∞, expected zt = 1
2
. Proposition 3 says that

region I exists if π2 = l
l+v

< 1− v
l
· 1−κ

κ
= π3. This can be re-written as

κ >
l + v

l + v + l
>

1

2
. (65)

Therefore, condition (62) is satisfied everywhere in region I.
In the Complexification BPE, Condition (64) must be satisfied in order for average z to

increase. Otherwise, average z decreases. Thus, if Condition (64) is satisfied, as t → ∞, zt
is expected to converge to 1

2
. Otherwise, if κ < 1−2π

2(1−π)
, then as t→∞, expected zt converges

to zmin.
In the Pooling BPE, only proposals yS are made, and they are approved conditional on

ρ = s. Every period, zt is thus expected to decrease with probability (1− z) · (1− κ) + z · κ.
Therefore, limt→∞ E [zt] = zmin.

In the Rejection BPBE, no proposal is approved, thus zt = z0, for all t > 0.
Finally, in the regions where there is cycling, the cycling happens around the boundary

between regions, i.e., around the value of z at which the location (κ, π) is on the boundary.
Since cycling only happens between the Simplification region and another region (either
Matching or Complexificaton), the boundary is given by π = π3(κ, z). Thus, the location
(κ, π) is on the boundary at noise z∗ defined implicitly by π = π3(κ, z∗).

A.9 Proof of Remark 1

For any κ ∈ (0, 1) and z ∈
[
zmin, 0.5

]
, let π̄ ≡ max{π1(κ, z), π3(κ, z)}. Let κ̄ be the value of

κ at which π1(κ, z) = π3(κ, z).
Consider any π ≥ π̄ and κ ≥ κ̄. By Proposition 2, this location is in the Simplification

region. Then, for ∆π ∈ (π − π2(κ, z), π − π1(κ, z)), a shock which decreases π by ∆π is a
move to location (π−∆π) in the Complexification region described in Proposition 2. Then,
the equilibrium play switches from yS being proposed by A after θS to yC being proposed by
A in that state. Also, proposer B switches to from proposing yS after θC to proposing yC .
Hence, the probability of yC being proposed increases. This also increases the probability of
z going up.

Similarly, let κ2 be given by the value at which π1(κ2, z) = π, and let κl = min{κ2,
1

2π
}.

Then, for ∆κ ∈ (κl − κ, 1− κ), a shock which increases κ by ∆κ is a move to location
(π, κ + ∆κ). This new locations in the Matching region if κ + ∆κ > κ2, or otherwise in
the part of the Simplification region where the long-run z converges to 1

2
(Proposition 6).

In either case, κ increases, which means a higher probability of state θC , in which proposal
yC is made (by A in the Simplification region and by both types in the Matching region).
Moreover, in both of these regions, z increases on average and converges to 1

2
, as shown in

Proposition 6.
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A.10 Proof of Remark 2

Follows from Remark 1 and Corollary 4.

A.11 The Single-Decision Marker’s Policy Choice

After signal ρ = s, the decision-maker gets the following gain over the status quo:

• if she implements yS:

v · (1− z) · (1− κ)

(1− z) · (1− κ) + z · κ
− l · z · κ

(1− z) · (1− κ) + z · κ
. (66)

• if she implements yC :

v · π − l · (1− π)− a · (1− z) · (1− κ)

(1− z) · (1− κ) + z · κ
. (67)

After signal ρ = c, the decision-maker gets the following gain over the status quo:

• if she implements yS:

v · z · (1− κ)

z · (1− κ) + (1− z) · κ
− l · (1− z) · κ

z · (1− κ) + (1− z) · κ
. (68)

• if she implements yC :

v · π − l · (1− π)− a · z · (1− κ)

z · (1− κ) + (1− z) · κ
. (69)

Since z ≤ 1
2
, notice that

(1− z) · (1− κ)

(1− z) · (1− κ) + z · κ
≥ z · (1− κ)

z · (1− κ) + (1− z) · κ
. (70)

Thus, the decision-maker:

1. implements yS regardless of signal if

π ≤ πsb(κ, z) ≡ z · (1− κ)

z · (1− κ) + (1− z) · κ
· v + l + c

v + l
and (71)

κ ≤ κrbh ≡ z · v
z · v + (1− z) · l

. (72)
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2. implements yC regardless of signal if

π ≥ πcb(κ, z) ≡ (1− z) · (1− κ)

(1− z) · (1− κ) + z · κ
· v + l + c

v + l
and (73)

π ≥ πrbl(κ, z) ≡ l

l + v
+

c

l + v
· (1− z) · (1− κ)

(1− z) · (1− κ) + z · κ
. (74)

3. implements yS after ρ = s and yC after ρ = c if

π ∈
(
πsb(κ, z), πcb(κ, z)

)
and (75)

π ≥ πrbh(κ, z) ≡ l

l + v
+

c

l + v
· z · (1− κ)

z · (1− κ) + (1− z) · κ
and (76)

κ ≤ κrbl ≡ (1− z) · v
(1− z) · v + z · l

. (77)

4. implements yS after ρ = s and maintains status quo after ρ = c if

κ ∈
(
κrbh, κrbl

)
and π ≤ πrbh. (78)

5. implements yC after ρ = c and maintains status quo after ρ = s if

π ∈
(
πrbh(κ, z), πrbl(κ, z)

)
, and κ > κrbl. (79)

6. maintains status quo after any signal if

π < πrbh(κ, z) and κ > κrbl. (80)

Cycling between regions happens if endogenous changes in z move a location (κ, π) be-
tween two regions. Notice that πcb, πrbh, and κrbh decrease in z, while πsb, πrbh, and κrbl

increase in z. Moreover, notice that κrbh ≤ 1
2
≤ κrbl and πrbl ≥ πrbh ≥ l

l+v
. These properties

imply that cycling between regions can occur only starting from the region κ ∈
(

1
2
, κrbl

)
and

π ∈
(
πrbh(κ, zmin), πrbh

)
, at some z ∈ (zmin, 1

2
). Then, starting from such a point (κ, π), the

decision-maker implements yS after ρ = s and maintains the status quo otherwise. Thus,
expected z falls. This in turn reduces πrbh. Then, at some z∗, πrbh(κ, z∗) ≤ π, i.e., the
location crosses into the region where the decision-maker implements yS after ρ = s and yC

after ρ = c. The average z is expected to increase if ρ = c is more likely than ρ = s, i.e., if
z · (1− κ) + (1− z) · κ > (1− z) · (1− κ) + z · κ. This reduces to the condition that κ > 1

2
.

In the region where there is cycling at location (κ, π), it happens around z∗∗ where

π = πrbh(κ, z∗∗). (81)
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Given (77),

z∗∗(κ, π) =
(π · (v + l)− l) · κ

(l + c− π · (l + v)) · (1− κ) + (π · (l + v)− l) · κ
(82)

Then, ∂z∗∗(κ,π)
∂π

> 0 and ∂z∗∗(κ,π)
∂κ

> 0. Moreover, as π → l
l+v

, z∗∗ → 0. As π → l+c
l+v

, z∗∗ → 1
2
.

Consider now comparing z∗∗ to the z∗ from the main model. Let (κ, π) be a location
in the parameter space that satisfies the conditions for cycling both in the main model and
in the model with a single decision maker. Then, from (11), z∗(κ, π) decreases in π. As
π → l

l+v
, z∗ > z∗∗ → 0. As π → l+c

l+v
, z∗ < z∗∗ → 1

2
. Hence, there exists π∗ ∈

[
l
l+v
, l+c
l+v

]
,

π∗ =
2 · l · (v + l) + (v)2 + l · c−√γ

l · (v + l)
, (83)

where γ = (2 · l · (v + l) + (v)2 + l · c)2 − 4 · l · (v + l) · (l · a + (l)2 + l · v). For π < π∗, we
have z∗ > z∗∗. For π > π∗, we have z∗ < z∗∗.

A.12 Proof of Remark 3

Notice that the self-regulation maps into the main model framework in the following way:
it is equivalent to the Simplification equilibrium play for the proposers, where the DM is
forced to play a = 1. Allowing the DM to choose a ∈ {0, 1} can only improve the DM ’s
welfare. A proposed Simplification equilibrium is not sustainable when the DM would reject
a proposal yS. The DM would reject if she expects the outside option (status quo) to yield
higher welfare.

The problem with a single decision-maker has policy yC as part of the solution only for
π ≥ πrbh ≥ l

l+v
. For those values of π, in the main model, yC is proposed only after θC .

Policy yC delivers a higher expected payoff when used only after θC than when used after
any θ or after ρ = c. Thus, in the region in which policy choice is contingent on signal,
the Simplification / Matching equilibrium yields higher welfare, as it offers yC only in the
state θC . For π < πrbh, the outcome with a single-decision maker can be achieved in an
equilibrium of our main model (the Pooling equilibrium or the Rejection equilibrium). Yet,
the main model allows for the Complexification equilibrium in a region which the decision-
maker would implement the play from the Pooling or the Rejection regions. Since these
equilibria are possible the main model for those parameter values, it must be the case that
the DM expects higher welfare under the Complexification equilibrium.

A.13 Proof of Remark 4

In the self-regulation case, average z increases if

κ · π > (1− κ) + κ · (1− π), (84)
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So if κ · π ≥ 1
2
. Thus, in this case, z increases on average until it reaches the upper bound

1
2
. If Otherwise, κ · π < 1

2
, z decreases on average, until it reaches the lower bound zmin.

In the case of a single decision-maker, we consider each of the regions:

1. where she implements yS regardless of signal, z decreases on average until it reaches
the lower bound zmin.

2. where she implements yC regardless of signal z decreases on average until it reaches
the lower bound 1

2
.

3. where she implements yS after ρ = s and yC after ρ = c, the average z increases if

z · (1− κ) + (1− z) · κ ≥ (1− z) · (1− κ) + z · κ, (85)

i.e., if κ ≥ 1
2
, and average z decreases otherwise.

4. where she implements yS after ρ = s and maintains status quo after ρ = c, average z
decreases.

5. where she implements yC after ρ = c and maintains status quo after ρ = s, average z
increases.

6. where maintains status quo after any signal, z remains at its initial value z0.

Outside the cycling region described in the single decision-maker’s problem, if average z
decreases, then it decreases until it reaches the lower bound zmin. If average z increases, then
it increases until it reaches the upper bound 1

2
. In the cycling region, the cycling happens

around the bound πrbh, so at the z∗ at which πrbh(κ, z∗) = π.
For self-regulation versus checks and balances and for single decision-maker versus checks

and balances, we show that there exist regions where complexity is higher in one case com-
pared to the other, and regions where the opposite is true.

Comparing the main model to the self-regulation outcome, consider the case in which
l
l+v

> 1/2. In that case, for κ → 1 and π ∈
(

1
2
, l
l+v

)
, we have z∞ = 1

2
in the case of self-

regulation, and z∞ = z0 in the case of checks and balances. However, for the cycling regions
of Proposition 4, we have we have z∞ = zmin in the case of self-regulation (since the cycling
requires κ < 1

2π
), and z∞ = z∗ > zmin in the case of checks and balances.

Comparing the main model to the single decision-maker, the Complexification region in
the main model has z∞ > zmin, while in the case of a single decision-maker, the same region
(with π < l

l+v
has z∞ = zmin. Then, at κ = 1/2 + ε, with ε → 0, and π ∈

(
l
l+v
, πrbh

)
, the

main model is in the Simplification region with z∞ = zmin, while with a single decision-maker
we are in the cycling region with z∞ > 0.
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