Seeing is “Behaving”:

Using Revealed-Strategy Approach to Understand Cooperation in Social Dilemma

February 04, 2019

Tao Chen
University of Waterloo
Department of Economics
Big Data Research Lab

Wan Wang
University of Waterloo
Department of Economics
Big Data Research Lab

Sining Wang
University of Waterloo
Department of Economics
Big Data Research Lab

Lei Chen
JiangHan University
School of Business
Positioning

- Statistics
- Algorithm

Behavioral Decision-Making

we are here
“The most important discovery was the evidence on the pervasiveness of heterogeneity and diversity in economic life... the long-standing edifice of the representative consumer was shown to lack empirical support.”

—— James Heckman (2001, p674)

Traditionally: \[Y = m(X) + \varepsilon, \]

where we impost a functional form on \(\text{var}(\varepsilon|X) \) to capture heterogeneity.
Motivation

For example: Cooperation among self-interested individuals in social dilemma. How people make cooperation decisions?

- International environment treaty;
- global counter terrorism strategy;
- patent sharing of technology innovation;
- neighborhood security watching.
On a tandem: how hard would you try?
From the literature:

- **Free-rider:** always do nothing
- **Conditional cooperator:** we know little about them
- **Strong cooperator:** always try hard
• A wide range of terms have been used to describe heterogeneous behavioral patterns in cooperation.

Examples:

- strong cooperators;
- weak cooperators;
- strong free-riders;
- week free-riders;
- strategic cooperators;
- conditional cooperators;
- imperfect cooperators;
- imperfect conditional cooperators;
- hump-shaped cooperators;
- noise makers.....
Motivation

• To date, we have not found a method that can systematically and comprehensively identify the existing (and the hypothesized) behavioral types scattered in this literature.

• Instead of pre-specify the agent types, we need to uncover heterogeneous behavior patterns from the data.
Research Goal: We propose a data-driven approach to uncover behavioral patterns in social dilemma.

1). How to systematically describe strategy patterns?

2). How different patterns dynamically interact with each other?
Experiment: public goods
Experiment

• Linear public goods game.

• 18 participants in a session, 6 people were randomly assigned into a group.

• Each session took approximately 60 minutes. In total 252 undergraduate students (14 sessions). Incentivized decisions.

• All the sessions were conducted with computer-based materials, programmed using z-tree.

• Context: weekend time allocation
Experiment

• Endowment: 10 hours

• Decision: time allocation
Experiment

• **Individual project**: Every hour yields 20 game points;

• **Group project**: every hour yields 40 game points.

• At the end of each round, all participants in the same group receives an **equal share** from the group project.

\[
\pi_i = 10 - C_i + \frac{1}{3} \sum_{j=1}^{6} C_j
\]
Experiment

• Repeated game, random-match;

• Seeing the group average as a “Signal” at the end of each round;

• Random end mechanism (at least 12 rounds).
The Contribution Decayed Overtime
A person’s **Behavior Profile** — a reliable tendency of how one makes decisions in interactive, dynamic settings — should be revealed by analyzing a series of observed decisions.
“Behavior is a product of the person and the environment.” Lewin (1943)

A **behavior profile** will at least consist of two pieces of information:

- unconditional behavior
- conditional behavior
Behavior Profile

• In a public goods game with certain rules (i.e., parameters and context), a behavioral profile should capture a participant’s behavioral pattern that:

1. How she makes decisions on her own and,

2. How she make decisions in response to others’ behaviors.
• Behavior Profile:

1. First-round contribution (unconditional decision)

2. Contribution to signal ratio (conditional decision)
 — average ratio over 12 period
 (capture how one respond to external influence)
 — variance of the ratio
 (capture the stability of the strategy.)
Behavior Profile

• Formally, we use

\[B_k^i = \{b_1^i, b_2^i, ..., b_k^i\} \]

to denote a player i’s behavior profile, which contains k components.

• Here, we make a week assumption that each participant’s strategy profile could be characterized by:

\[B_3^i = \{b_1^i, b_2^i, b_3^i\} \]

where:

- \(b_1^i\) is first-round contribution;
- \(b_2^i\) is average ratio over time;
- \(b_3^i\) is variance of the ratio.
• Suppose every participant has her own reasoning and therefore, a unique behavior-profile, which strategy-profiles are similar enough to be considered as the same “type”?

• For individual i, let consider the behavior-profile as a vector. Operationally, we use the Euclidean distance between the vectors to determine the similarity between the profiles.
Behavior Profile

• As an example, the Euclidean distance between two vectors B^i_3, B^j_3 is measured by:

$$d(B^i_3, B^j_3) = \sqrt{(b^i_1 - b^j_1)^2 + (b^i_2 - b^j_2)^2 + (b^i_3 - b^j_3)^2}$$

• Based on this distance measure, we then apply hierarchical clustering method to divide individuals into different types.
Results
Cluster Dendrogram
Cluster Dendrogram

Tend not to cooperate

Tend to cooperate
Results

Cluster Dendrogram

Tend not to cooperate Strong Cooperator Conditional Cooperator
Results

Cluster Dendrogram

- Tend not to cooperate
- Strong Cooperator
- Lower-than-signal Cooperator
- Higher-than-signal Cooperator
Results

Cluster Dendrogram

Free-rider
Hump-shaped
Strong Cooperator
Lower-than-signal Cooperator
Higher-than-signal Cooperator
The hump-shaped cooperator was theoretically proposed by Fehr and Gacheter, (2002, *Nature*)

Figure 2. Contribution to signal Ratio over time

The graph shows the contribution to signal ratio over rounds for different types of cooperators: **Strong**, **Hump-shaped**, **Higher-than-signal**, **Lower-than-signal**, and **Free-riding**. The ratio is depicted on the y-axis, and the rounds are on the x-axis. The hump-shaped cooperator is characterized by a ratio that rises and falls in a hump-like pattern over the rounds.
Results

Free-riders

![Bar chart and line graph showing contribution distribution and conditional contributions over rounds.

Example reasoning: “selfish is part of human nature, let’s do the rational thing.”
Results

Strong cooperators

Example reasoning: “Loyalty never give up!”
Results

Higher-than-signal cooperators

Example reasoning: “I try to lead people do the right thing, but I don't want to be a fool.”
Results

Lower-than-signal cooperators

Example reasoning: “I do a little less than the average, so that I did my part, and won’t loss money”
Results

hump-shaped cooperators

Example reasoning: “I trick other people contribute a lot, then I can enjoy the benefit.”
Results

The Hump-shaped cooperators alter contribution conditional on the signal

<table>
<thead>
<tr>
<th>Signal</th>
<th>Average Ratio (for each type of players)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Higher-than-signal cooperator</td>
</tr>
<tr>
<td>0-20%</td>
<td></td>
</tr>
<tr>
<td>20%-30%</td>
<td>1.19</td>
</tr>
<tr>
<td>30%-40%</td>
<td></td>
</tr>
<tr>
<td>40%-50%</td>
<td></td>
</tr>
<tr>
<td>50%-60%</td>
<td></td>
</tr>
<tr>
<td>60%-70%</td>
<td>1.05</td>
</tr>
<tr>
<td>70%-80%</td>
<td></td>
</tr>
<tr>
<td>80%-100%</td>
<td></td>
</tr>
</tbody>
</table>
Application: Agent-based Model
Agent-Based Simulation

• Agent-based simulations are widely used in social science studies, especially in studying the dynamic of strategic interactions.

• A challenge task is to identify (and justify) the agent types.

• Instead of pre-specify the agent types, we can build the simulated agents based on the strategy-profiles being revealed from our experimental data.
Agent-Based Simulation

\[
C_{i,t} = \begin{cases}
first_i, & t = 1 \\
\text{signal}_t \times \text{ratio}_{i,t}, & t \geq 2
\end{cases}
\]

Where:

- \(C_{i,t} \) denotes type \(i \) agent’s contribution in round \(t \);
- \(first_i \) denotes type \(i \) agent’s first-round contribution;
- \(ratio_{i,t} \) denotes type \(i \) agent’s ratio in round \(t \);
- \(signal_t \) denotes the signal in round \(t \).
Agent-Based Simulation

- In particular, we examine the effectiveness of policies that aim to change the perceived norm.

Simulation 1: exactly the same as our laboratory setting;

Simulation 2: Double the average contribution in round 1, and then send this modified signal to the agents for their decision in round 2.
Agent-Based Simulation

Figure 4. Policy intervention promote cooperation and social welfare

1000 simulated sessions in each treatment.
The one-instance change in the signal improves social welfare

<table>
<thead>
<tr>
<th></th>
<th>WITHOUT Policy Intervention</th>
<th>WITH Policy Intervention</th>
<th>Changes in contribution</th>
<th>Changes in payoffs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Contribution (% of endow.)</td>
<td>Average Earnings (Points)</td>
<td>Average Contribution (% of endow.)</td>
<td>Average Earnings (Points)</td>
</tr>
<tr>
<td>FR</td>
<td>24%</td>
<td>2937</td>
<td>24%</td>
<td>3139</td>
</tr>
<tr>
<td>LC</td>
<td>31%</td>
<td>2877</td>
<td>40%</td>
<td>2976</td>
</tr>
<tr>
<td>HC</td>
<td>48%</td>
<td>2688</td>
<td>59%</td>
<td>2766</td>
</tr>
<tr>
<td>HS</td>
<td>14%</td>
<td>3066</td>
<td>12%</td>
<td>3281</td>
</tr>
<tr>
<td>SC</td>
<td>87%</td>
<td>2239</td>
<td>87%</td>
<td>2433</td>
</tr>
</tbody>
</table>
• The **revealed-strategy approach** uncover complex manifestations in cooperation behaviors that have been overlooked.

• We found three sub-types of conditional cooperators: lower-than-signal, higher-than-signal, and hump-shaped cooperators.

• To our knowledge, we were the first to identify “hump-shaped” players in repeated public goods game with random matching.
Discussion

• This revealed-strategy approach could be applied to many other situations to look at the heterogeneous behavioral patterns in dynamic interactions.

• We showed one possible application of the revealed-strategy approach: to build agent-based models and test the effectiveness of certain policies.
General Framework

Suppose we have a set of observed actions \mathcal{A}. We first use dimensionality reduction techniques to construct the decision-maker’s **behavior profile** — a reliable tendency of how one behave in strategic interactions. Let’s use \mathcal{B} to denote the behavioral profile, then:

$$\mathcal{T}_1 : \mathcal{A} \rightarrow \mathcal{B}$$

After constructing the strategy profile, we then use unsupervised machine learning techniques to cluster individual behavior profiles into several different types, that is:

$$\mathcal{T}_2 : \mathcal{B} \rightarrow \mathbb{N}, \mathbb{N} \land I$$

Upon having the cluster results, we can then conjecture the motivations/preferences based on the properties of each type of players.

$$\mathcal{H} : \mathbb{N} \rightarrow \text{types}$$

In general, we propose the revealed-strategy approach as:

$$\mathcal{T} : \mathcal{A} \rightarrow \text{types},$$

where: $\mathcal{T} = \mathcal{H} \circ \mathcal{T}_2 \circ \mathcal{T}_1$